24,793 research outputs found

    Strategy and Coherence of a Program of Regional Development: A Methodology for synergy evaluation

    Get PDF
    The main purpose of this paper is to present a methodological proposal to value the synergy in programmes of regional development, regarding either their objectives or their performances. First, the main aspects of the methodology used to evaluate individually the synergy of the objectives (performances) are set out by using a Delphi technique. This technique allows to build a matrix of weights, according to the degree of synergy for every objective (performance). Then, hierarchical clusters are applied in the data processing. This technique leads to a ranking of objectives which shows the strategic value of the programme subject to evaluation. The methodological analysis shows also an application of the Community Support Framework ( 1994-1999) for the Spanish Objective 1 regions.

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions.

    Get PDF
    Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject's self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot-ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject's walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject's walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the subject's walking kinematics and kinetics well for the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait period the most accurately. When used to predict how the subject would walk at 1.1 m/s, synergy controls predicted a gait period close to that estimated from the linear relationship between gait speed and stride length. These findings suggest that our neuromusculoskeletal simulation framework may be able to bridge the gap between patient-specific muscle synergy information and resulting functional capabilities and limitations

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    From physical marketing to web marketing

    Get PDF
    Reviews the criticism of the 4P marketing mix framework as the basis of traditional and virtual marketing planning. Argues that the customary marketing management approach, based on the popular marketing mix 4Ps paradigm, is inadequate in the case of virtual marketing. Identifies two main limitations of the marketing mix when applied in online environments namely the role of the Ps in a virtual commercial setting and the lack of any strategic elements in the model. Identifies the critical factors of the Web marketing and argues that the basis for successful e-commerce is the full integration of virtual activities into the company's physical strategy, marketing plan and organisational processes. The 4S elements of the Web marketing mix framework offer the basis for developing and commercialising business to consumer online projects. The model was originally developed for educational purposes and has been tested and refined by means of three case studies

    Software Challenges For HL-LHC Data Analysis

    Full text link
    The high energy physics community is discussing where investment is needed to prepare software for the HL-LHC and its unprecedented challenges. The ROOT project is one of the central software players in high energy physics since decades. From its experience and expectations, the ROOT team has distilled a comprehensive set of areas that should see research and development in the context of data analysis software, for making best use of HL-LHC's physics potential. This work shows what these areas could be, why the ROOT team believes investing in them is needed, which gains are expected, and where related work is ongoing. It can serve as an indication for future research proposals and cooperations

    The 4s web-marketing mix model

    Get PDF
    This paper reviews the criticism on the 4Ps Marketing Mix framework, the most popular tool of traditional marketing management, and categorizes the main objections of using the model as the foundation of physical marketing. It argues that applying the traditional approach, based on the 4Ps paradigm, is also a poor choice in the case of virtual marketing and identifies two main limitations of the framework in online environments: the drastically diminished role of the Ps and the lack of any strategic elements in the model. Next to identifying the critical factors of the Web marketing, the paper argues that the basis for successful E-Commerce is the full integration of the virtual activities into the company’s physical strategy, marketing plan and organisational processes. The four S elements of the Web-Marketing Mix framework present a sound and functional conceptual basis for designing, developing and commercialising Business-to-Consumer online projects. The model was originally developed for educational purposes and has been tested and refined by means of field projects; two of them are presented as case studies in the paper.\ud \u

    Synergy: An Energy Monitoring and Visualization System

    Get PDF
    The key to becoming a more sustainable society is first learning to take responsibility for the role we play in energy consumption. Real-time energy usage gives energy consumers a sense of responsibility over what they can do to accomplish a much larger goal for the planet, and practically speaking, what they can do to lower the cost to their wallets. Synergy is an energy monitoring and visualization system that enables users to gather information about the energy consumption in a building – small or large – and display that data for the user in real-time. The gathered energy usage data is processed on the edge before being stored in the cloud. The two main benefits of edge processing are issuing electricity hazard warnings immediately and preserving user privacy. In addition to being a scalable solution that intended for use in individual households, commercial offices and city power grids, Synergy is open-source so that it can be implemented more widely. This paper contains a system overview as well as initial finding based on the data collected by Synergy before assessing the impact the system can have on society
    corecore