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ABSTRACT

The key to becoming a more sustainable society is first learning to take responsibility for the role we play in energy
consumption. Real-time energy usage gives energy consumers a sense of responsibility over what they can do to
accomplish a much larger goal for the planet, and practically speaking, what they can do to lower the cost to their
wallets. Synergy is an energy monitoring and visualization system that enables users to gather information about the
energy consumption in a building – small or large – and display that data for the user in real-time. The gathered energy
usage data is processed on the edge before being stored in the cloud. The two main benefits of edge processing are
issuing electricity hazard warnings immediately and preserving user privacy. In addition to being a scalable solution
that intended for use in individual households, commercial offices and city power grids, Synergy is open-source so that
it can be implemented more widely. This paper contains a system overview as well as initial finding based on the data
collected by Synergy before assessing the impact the system can have on society.



Table of Contents

List of Figures vi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Electrical Panel Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Electrical Outlet Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Our Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Project Requirements 5
2.1 Critical Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Critical Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Recommended Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Suggested Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Use Cases 7
3.1 Settings Based Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Rename Channel / Device / Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Activate New Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.4 Request Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.5 Receive Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Energy Usage Based Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Group Monitoring Channels/Devices into Subsets . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 View Single Channel Energy Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 View Subset Energy Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 View Cumulative Energy Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 View Historical Energy Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Conceptual Model 14
4.1 Visualization Dashboard Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Menu Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Settings Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 User Interface 17
5.1 Settings Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Real-Time Energy Chart Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Historical Chart Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



6 System Design 25
6.1 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2.1 Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Backend Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2 Technologies Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4 Frontend Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.2 Technologies Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.5 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5.1 React vs. Other Javascript UI Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5.2 ExpressJS vs. Other Web Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5.3 MySQL vs. Other Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 System Test Design 34
7.1 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 Developmental Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2.1 Javascript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.3 Usability Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4 System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Project Timeline 37

9 Risk Analysis 39

10 Applications 41
10.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.2 Energy and Cost Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.3 Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.4 Denial-of-Service Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Societal Considerations 44
11.1 Ethical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.2 Social . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.3 Political . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.4 Manufacturability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.5 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.6 Environmental Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.7 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.8 Lifelong Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12 Conclusion 47

Bibliography 48

A Source Code 51

v



List of Figures

3.1 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Visualization Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 The sidebar can be expanded to see more details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Settings can be accessed through the settings icon for renaming and grouping . . . . . . . . . . . . . 16

5.1 Login Page to Access Visualization Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 View and edit all channels available in system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 View and edit all monitoring devices available in system . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Create a new group with a combination of groups, devices and channels . . . . . . . . . . . . . . . . 20
5.5 View and edit all groups that have been added to the system . . . . . . . . . . . . . . . . . . . . . . . 20
5.6 View and edit all reminders that have been created for the system . . . . . . . . . . . . . . . . . . . . 21
5.7 View the cumulative energy usage in real time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.8 Create a new chart to visualize a subset of energy usage data in real time . . . . . . . . . . . . . . . . 22
5.9 View the historical energy usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.10 Create a new chart to visualize a subset of energy usage data over time . . . . . . . . . . . . . . . . . 24

6.1 Data Centric Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 What happens to an energy usage data point as it is received . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Interactions between the user interface and web server . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.1 Legend for Development Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Fall Development Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Winter Development Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.4 Spring Development Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.1 Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



Chapter 1

Introduction

1.1 Motivation

The world runs on electricity. Whether it be lighting homes, pumping water, powering factories, or even, in some

cases, opening a door. However, energy usage is difficult to gauge. Energy bills often get paid without knowledge

of how much energy was used and where. For example, many large complexes leave their lights and devices on

throughout the night. On-demand electricity is expensive; both to our wallets and our planet. On average, American

households spend $112 per month on their electricity bill[5]. Often times, electrical bills can spike due to devices that

have been left powered on or malfunctioned, and can go undetected for years. Evidence has shown that monitoring

domestic electricity usage plays a large role in reducing consumption [33]. Energy monitoring solutions allow people

to be conscientious about how much energy they are using. These solutions are essential in keeping energy costs down

for the consumer by revealing noninvasive lifestyle changes to lower energy consumption, such as making a habit

of turning off lights or devices when not in use [33]. However, there are a multitude of challenges in implementing

universal energy monitoring.

The challenges of energy monitoring stems from a problem with energy management. While monitoring specifies

the process of keeping track of the energy usage, management refers to the coordinated efforts to habituate a reduction

in energy consumption [40]. At any scale, energy management requires a coordinated effort between all actors. Actors

could include the residents of a single household, or the employees within an office building. There must be consensus

among the actors to realize lowered energy usage; be that an understanding that employees must turn off their monitors

and devices at the end of the workday, or that all lights must be turned off in the home before leaving. Without proper

energy management, energy monitoring would have much less meaning. At the same time, without energy monitoring,

it would be much more difficult to assess how reductions in energy consumption could be realized.

1



1.2 Background

Monitoring energy usage is not a new concept. Electricity usage is consistently monitored by power companies in

order to charge consumers for the energy that they use. However, there has been very little effort to deliver these

monitoring capabilities to the individual. Instead, consumers are charged a lump sum without any distinction as to

where that energy went or knowledge of how to reduce its usage. Placing energy management solutions in the hands

of consumers enables them to actively institute measures for saving energy. The difficulty of this solution comes when

one considers how these solutions could be enabled within households. Over 70% of the residential homes within the

US were built prior to 2000 [45], meaning that they simply do not have the infrastructure to adequately equip energy

monitoring and management devices without remodeling.

1.2.1 Electrical Panel Solutions

In order to accommodate some of the challenges that come with energy monitoring, many existing solutions have

made their products compatible with other technologies in an effort to attract a larger audience. Sense [35] is a

monitoring device that connects to a home’s electrical panel. The device monitors electrical throughput in order to

determine how much electricity is being used by the household at any given time. Sense also provides a cloud-based

visualization service accessible via a web-based and smart phone application. Sense allows for precise detection of

home activity including when electricity is being used and which device is using it. It can also notify users when it

detects unnecessary energy usage from a device. However, precise detection that Sense provides introduces privacy and

security concerns with regards to home safety. Data of every electrical action is monitored and immediately uploaded

to Sense’s cloud servers. If bad actors were to intercept this data stream it could give a general idea of when a user is

home or not, leaving homes vulnerable [21; 23]. Constantly uploading data also means that the home’s bandwidth is

clogged with the hundreds of megabytes that Sense uploads to the cloud every day. Furthermore, the device itself is

rated to a maximum of 200 amps meaning it can only be placed in the electrical panel of a residential home. Placing

the device in a larger complex, such as an office building would cause it to overload, making the scalability of such a

system impossible.

Neurio [13] is another system which is installed in the home’s electrical panel. Similar to Sense, it provides cloud-

based data visualization that requires a constant connection to the internet. Neurio can also be integrated with solar

panels mounted on the home’s roof and supports submetering of major appliances like electrical vehicles. However,

these additional features fall victim to the same drawbacks as Sense; primarily that none of the home’s private usage

data is stored locally, and the system has not been designed to be used outside of a standard residential home.

2



1.2.2 Electrical Outlet Solutions

There are also some alternative energy monitoring systems such as TP-Link’s Smart Plugs [41]. These devices can be

plugged into an existing power outlet on the wall or on a power strip. They can then monitor energy usage of a single

appliance which can be plugged in the front side of the smart plug. Similar to both Sense and Neurio, TP-Link Smart

Plugs stream their monitoring usage data to the cloud. Users can then access this visualization data through their smart

phone and web applications. Furthermore, the plugs are also smart home enabled, meaning they can connect to existing

smart home systems such as Amazon’s Alexa and Google Home to be turned on and off remotely. Unfortunately, each

smart plug can only monitor a single device at a time and costs $20 each, which can become expensive given how

many devices reside in the modern home. This presents issues when it comes to the scalability of the product.

Other existing solutions have attempted to solve problems with measuring energy usage in low power devices

[27] and power fluctuations in networking devices [24]. Monitoring in a low power environment involves precise

monitoring devices that are unsuitable for consumer scalability. These types of devices would be best suited for

monitoring the energy usage of the monitoring devices themselves or other similar sensors. Similarly, networking

devices such as load balancers, switches, routers and modems use a lot of energy on a daily basis and these devices are

always on and always processing. Although simple monitoring on these devices would be helpful, the real use case

comes when attempting to detect security vulnerabilities or cyber-attacks. A denial of service (DoS) attack spams a

networking device with hundreds of thousands of packets in order to attempt to block traffic to the services provided.

Generally, when a DoS starts, the device’s processor picks up, increasing its power usage. Energy Monitoring on

networking devices could help detect DoS attacks when they start, instead of finding them hours later when it is too

late.

1.3 Our Solution

In order to combat the security and scalability issues of existing systems, we have developed Synergy, a reliable, scal-

able, open-source, and privacy-protecting energy measurement tool. The data is generated between various subsystems

for processing and storage, and only after initial processing it is periodically uploaded to the cloud. The system has

an integrated electricity usage visualization dashboard that displays real-time power usage statistics. Furthermore, the

system is able to detect sudden spikes or irregularities in usage, informing users to the possibility of a blown fuse or

other energy leakage by enabling quick alert generation.

Keeping the system on a local area network (LAN) enables the system to not require a constant internet connection.

This allows the system to be scaled for larger complexes by allowing multiple devices to communicate wirelessly and

has the added benefit of working in remote areas that have decreased Internet access. For example, using a LAN is

much more sensible if a person leaves their stove on and needs an immediate warning. Synergy does not need to upload

3



data to feed it back to the person. Instead, the real-time data is transmitted directly to the user. While there are plenty

of ways that already exist to monitor energy usage, most of these methods fall short in security and scalability due to

their reliance on cloud computing. By processing on the edge, our system is able to avoid these issues and empower

users to take responsibility for their energy consumption more securely and on a much larger scale than is currently

possible.

While there are plenty of ways that already exist to monitor energy usage, most of these methods fall short in

security and scalability due to their reliance on cloud computing. By processing on the edge, our system will be able

to avoid these issues and empower users to take responsibility for their energy consumption more securely and on a

much larger scale than is currently possible.

4



Chapter 2

Project Requirements

In order to ensure the effectiveness of our system, we identified requirements that can be categorized as critical func-

tional, critical non-functional, recommended, or suggested for implementation.

2.1 Critical Functional Requirements

These requirements define what our system will do. They are the essential elements of our system, and without them,

our system would not operate.

• Gather electrical energy usage data from connected devices

• Visualize data in a real-time manner

• Visualize history of data gathered

The main objective in creating our system is to collect and analyze a building’s energy usage data. In order to do this,

we will have to first and foremost gather energy usage data to analyze, and then transform that data in a meaningful

way; in this case, that entails visualizing the data.

2.2 Critical Non-Functional Requirements

In order to obtain the necessary functionality, our system will need to have certain properties. The following require-

ments are crucial in determining what our system will be able to do.

• Securely store usage data

• Measure energy usage at an accurate rate

• Be scalable to larger complexes

5



An energy monitoring system that is not accurate is useless. Our system will have 97% accuracy in measuring energy

consumption, as that is the highest grade AC monitoring device we can obtain. Likewise, our primary goal is to make

an energy monitoring device that can be scaled for larger buildings, such as offices and dorms, so scalability is crucial

to our system.

2.3 Recommended Requirements

Recommended requirements define a set of requirements that we would like implement and are likely to be imple-

mented but are not critical for the implementation of the system.

• Alert users of potential energy usage inconsistencies

• Send user-requested reminder notifications

• Modularize components for ease of expansion

Sending alerts based off of anomalous energy consumption and allowing users to request notifications about the energy

consumption of certain devices would allow our system to become interactive rather than passive. Likewise, the more

modular our system is, the easier it will be to install and work with.

2.4 Suggested Requirements

These requirements define objectives that we would like to accomplish but would only implement once all the other

requirements have been completed. They have little effect on the outcome of the system and would only serve to

further the implementation of the system.

• Connect to existing smart home devices

• Predict future usage trends and generate suggestions

• Maximize sampling rate

Our device itself should be small and affordable so that it can easily be used throughout an entire complex in order to

give the best results. A higher sampling rate would increase precision of our analysis, and would be useful in making

predictions of future energy consumption trends.

All of our requirements were able to be implemented with the exception of future usage trend predictions. This is

because, the more we looked into it, there were more and more aspects to it that would be required to get it working

how we envisioned it that it became a project of its own, outside the scope of our senior design project.

6



Chapter 3

Use Cases

In order to identify the different use cases of a system, we separated cases into viewing energy usage and editing the

settings of the system. These use cases helped us better understand exactly how to design and implement the system.

In Figure 3.1, the left side represents the available settings and the right side represents different ways of viewing

different sets of energy usage. A detailed description of each individual use case follows.

Figure 3.1: Use Case Diagram

3.1 Settings Based Use Cases

3.1.1 Login

To ensure that each actor is only able to access their data, or the data that is appropriate for them, it is important to

have the actors login. This way, actors can access their own energy usage data. It also allows the ability to implement
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a role based user system so that a potential administrator could see the cumulative data but not per device information

which could be a privacy violation. This user type system is discussed further in section 11.2

• Goal: Login to allow actors to access their energy usage data

• Pre-condition: Actor has device and account

• Post-condition: Actor has ability to see their energy usage data

• Exceptions:

– Actor leaves blank fields

∗ Response: Prompt user for information

– Actor enters incorrect information

∗ Response: Prompt user to create account or check that information entered is correct

3.1.2 Rename Channel / Device / Subset

Actors need to be able to easily identify how much energy each device is using. Because of this, they need to be able

to change the name of a channel, device or a subset of the two to something meaningful to them, such as ”television”

or ”living room”.

• Goal: Change the user facing name of the specified channel, device or subset

• Precondition: Channel, device or subset exists within system and is collecting usage data

• Postcondition: Channel, device or subset has been renamed

• Exceptions:

– Item to be renamed does not exist within monitoring system

∗ Response: Notify actors that item doesn’t exist

– An error occurred whilst renaming the item

∗ Response: Notify actors of error and prompt actors to refresh the page and retry naming the item

3.1.3 Activate New Device

To ensure that the system remains modular, actors are able to easily activate new monitoring devices. When plugging

in a new device, actors are able to connect to the device using bluetooth 4.1 via their smartphone in order to provide

it with LAN credentials. Adding new devices to the environment increases the breadth of monitoring and give further

insight into an actor’s energy consumption.
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• Goal: Add a new monitoring device to the system

• Precondition: New monitoring device has been connected to power

• Postcondition: System collects usage data from new monitoring device

• Exceptions:

– New monitoring device has not been connected to the LAN

∗ Response: Notify actors that no devices have been found and prompt actors to make sure devices are

plugged in and to connect to it using bluetooth.

– New monitoring device was found but an error occurred whilst connecting

∗ Response: Notify actors of error and prompt actors to restart the monitoring device

3.1.4 Request Notifications

Synergy allows actors to request notifications when channels are left powered on at a certain time. This allows actors to

remain informed about their energy consumption and give them an opportunity to identify unnecessary energy usage.

• Goal: Receive notifications when energy usage meets a specified condition

• Precondition: Usage data exists, condition is available for data set

• Postcondition: Actor receives notifications when condition is met

• Exceptions:

– No usage data exists

∗ Response: Notify actor that no data is being collected

– Condition can never be met

∗ Response: Notify actor that condition could never be met and prompt use to change condition

– Actor has not provided contact information

∗ Response: Notify user that no contact information has been set and prompt user to provide contact

information

3.1.5 Receive Notifications

Synergy allows actors to receive notifications about their energy usage. Energy usage is used to generate a support

vector machine (SVM) in order to classify energy usage data to identify outliers. Outliers can be used to find faulty or

malfunctioning devices as well as short-circuits.
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• Goal: Receive notifications based on real-time energy usage

• Precondition: System is collecting energy usage data

• Postcondition: System notfies users of outliers in neergy usage consumption

• Exceptions:

– Not enough data is available to generate a support vector machine

∗ Response: Notify actor that at least a week of energy usage collection data is required to predict

outliers.

– Outlier is incorrect

∗ Response: Allow actor to inform system that outlier is incorrect so that it can use actor supplied

information to inform future outlier decisions.

3.2 Energy Usage Based Use Cases

3.2.1 Group Monitoring Channels/Devices into Subsets

Actors have the option to group multiple channels, devices and even other subsets in order to visualize the energy

usage of a subset of the total. For example, rather than knowing the energy usage of a toaster alone, an actor may be

interested in the energy consumption of their kitchen as a whole. Because of this, users are able to arrange channels,

devices and subsets in ways that are meaningful to them.

• Goal: Group together a set of channels, devices or other subsets

• Precondition: Monitoring channels/devices/subsets exist on the system

• Postcondition: Monitoring channels/devices/subsets are grouped together in a subset

• Exceptions:

– Actors attempts to group channels/devices/subsets that they do not have access to

∗ Response: Notify actor about no permissions to access channels/devices/subsets

3.2.2 View Single Channel Energy Usage

Actors have the option to view the energy usage of a single channel in real time. Energy usage can be viewed in a

multitude of graphical and statistical formats including pie, bar and line charts as well as how many Amps are being

used and the cost of that energy in the local currency at rate per killowatt hour set by the actor. This view is the building
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block of the system and from here, actors can expand the energy usage net to multiple channels, devices and subsets

which is further discussed in section 3.2.3.

• Goal: View the energy usage data for a single channel

• Precondition: Channel exists and energy usage data exists

• Postcondition: Actor can visualize the usage data on screen

• Exceptions:

– Channel does not exist

∗ Response: Notify actor that the specified channel does not exist

– Energy usage data does not exist

∗ Response: Notify actor that no usage data exists for the channel

– An error occurred fetching the data from the database

∗ Response: Retry and if second fetch fails, notify actor that fetch failed and prompt actor to retry search

or restart the system

3.2.3 View Subset Energy Usage

Actors can expand their energy usage visualization abilities by creating subsets. A subset can consist of a group of any

number of channels, monitoring devices and other subsets. Additionally, actors have the option to further expand their

view when creating a chart wherein they have the option to create a chart-based subset which can also be comprise

of multiple channels, monitoring devices and pre-existing subsets. Similar to viewing the energy usage of a single

channel, actors can view this information in a multitude of ways, however, the options laid out in section 3.2.2 can be

expanded to separate how individual subset members are displayed on the chart as other options including viewing the

average usage of each member and displaying a severity scale based on that member’s average over time. Subsets are

useful for grouping items together for example, grouping all the devices in the kitchen into a group called ”Kitchen”.

• Goal: View the energy usage of a group of monitoring devices and/or channels

• Precondition: All included monitoring devices and/or channels exist and are collecting usage data

• Postcondition: Actor can visualize the combined energy usage on screen

• Exceptions:

– Monitoring devices and/or channels do not exist
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∗ Response: Notify actor that the specified monitoring devices and/or channels do not exist

– Energy usage data does not exist

∗ Response: Notify actor that no usage data exists for the specified monitoring devices and/or channels

– An error occurred fetching the data from the database

∗ Response: Retry and if second fetch fails, notify actor that fetch failed and prompt actor to retry search

or restart the system

3.2.4 View Cumulative Energy Usage

Actors have the ability to view how much energy the system is cumulatively using across all of their monitoring

devices. This enables actors to view their total energy usage. When creating energy usage metrics and charts, actors

also have many of the same options available to them as outlined in section 3.2.2 and section3.2.3. Cumulative energy

usage can be viewed in both realtime as well as historically which will be further discussed in section 3.2.5.

• Goal: Visualize all the data collected for a specified user including all of their monitoring devices and channels

• Precondition: User exists and energy usage data exists for the specified user

• Postcondition: Actor can visualize the combined energy usage on screen

• Exceptions:

– Energy data does not exist

∗ Response: Notify actor that no usage data exists

– An error occurred fetching the data from the database

∗ Response: Retry and if second fetch fails, notify actor that fetch failed and prompt actor to retry search

or restart the system

3.2.5 View Historical Energy Usage

In additional to viewing realtime energy usage, actors have the ability to view their historical energy usage which

displays as a snapshot of the time period specified. As explained in section 3.2.4, actors can view their cumulative

energy usage of all time or the have the ability select a date range. The based on the duration of the date range specified,

the system will automatically take a snapshot of the specified dates so as to reduce the amount of data that needs to be

transferred and visualized. For example, if an actor would like to view the energy usage between January and March,

the system will generate the average energy usage of each day and display that. However, if the user would like to

visualize the energy usage between January 1st and January 3rd, the system will instead generate the average energy
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usage of each hour to display. This dynamic energy usage calculation gives the actor fine grain control over how they

view their energy usage without adding additional overhead to the network and the graphing software.

• Goal: Visualize energy usage of a channel, monitoring device of subset between two specified dates.

• Precondition: Energy usage exists for the specified date period

• Postcondition: Actor can visualize the historical energy usage on screen

• Exceptions:

– Energy usage does not exist during specified time period

∗ Response: Notify actor that no usage data exists for the specified time period and prompt user to try a

different time period

– An error occurred fetching the data from the database

∗ Response: Retry and if second fetch fails, notify actor that fetch failed and prompt actor to retry search

or restart the system
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Chapter 4

Conceptual Model

Conceptual models illustrate what the initial design of the project will look like. The following figures show the

concepts for the front-end visualization dashboard. Each figure portrays a different view of the application with its

own functionality.

4.1 Visualization Dashboard Home

Figure 4.1 shows the dashboard that will be displayed to the actor when logged in. By default it will show cumulative

usage. The buttons on the left hand side will enable actors to change to, for example, the historical energy usage tab.

The settings icon will open the settings pane as seen in Figure 4.3. The user icon will open the user pane. On the

dashboard itself, there are a number of charting options including pie charts, sunburst diagrams and line charts that

can show one’s energy usage in different formats. These charts will be configurable by the actor.

Figure 4.1: Visualization Dashboard
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4.2 Menu Control

When an actor hovers over the sidebar menu buttons on the left hand side, the menu will expand allowing actors a

more detailed description of what each button does as seen in Figure 4.2.

Figure 4.2: The sidebar can be expanded to see more details
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4.3 Settings Pane

The settings pane allows actors to edit the system’s settings. For users, this means the ability to activate monitoring

devices, rename devices, rename channels and group devices and channels together. For administrators, this means the

ability to group sets of users together and rename those groups. The final version of the settings pane will have many

more options than those shown in Figure 4.3.

Figure 4.3: Settings can be accessed through the settings icon for renaming and grouping
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Chapter 5

User Interface

The visualization platform provides a simple user interface that allows the user to interact with the system. It consists of

three primary sections; settings, real-time charts and historical charts. The settings pane allows users to edit connected

monitoring devices, create subsets and set reminders. The later two pane’s gives users different options to view their

energy usage.

When a user first connects, they will be presented with a log-in page as seen in Figure 5.1. Users can create an

account using their email and have the option to enter the size of their family, the cost of their energy usage per kWh

which can be determined from the user’s energy bill. These numbers are then used to calculate energy usage statistics

and costs per family member. Users also have the option to enter their phone number if they would like to set-up

reminders. All of this information can be added/changed at a later from the user’s profile.

Figure 5.1: Login Page to Access Visualization Dashboard
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5.1 Settings Pane

The settings icon gives users the ability to view any existing channels, monitoring devices, subsets and reminders.

Channels and monitoring devices make up the core of the system. A monitoring device can consist of 1 or more

channels. The settings pane allows users to search for any named channel or monitoring device and will then redirect

them to the appropriate panel. Figure 5.2 shows what the list of channels looks like. From here, users can view

whether a channel is currently powered on. Additionally, they have the option to view that channel in a chart, edit any

notifications that are attached to the channels or edit the channel’s name.

Figure 5.2: View and edit all channels available in system

Similar to the channels panel, Figure 5.3 shows the monitoring device panel which displays the devices that have

been added to the system. Upon selecting any device, the right side will be populated with all of the channels that exist

on that device. From here, users can also access any of the options available in the channels list. Unlike the channels

list. Individual monitoring devices can be removed from the system using the delete button.
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Figure 5.3: View and edit all monitoring devices available in system

Both monitoring devices and channels can be grouped into subsets from the groups panel. Figure 5.4 illustrates the

group creation process. Users have the option to choose a group name as well as 2 or more group members. Members

can consist of other groups, devices or channels. Once created, groups can be viewed in the groups panel. Similar to

the monitoring devices panel, created groups are listed on the left hand side. Selecting a group will show its members

on the right hand side. Group members are separated by type and can be searched for using the integrated search box.

The groups panel can be seen in Figure 5.5.
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Figure 5.4: Create a new group with a combination of groups, devices and channels

Figure 5.5: View and edit all groups that have been added to the system

Lastly, the settings pane allows users to create reminders. Figure 5.6 displays the create a reminder form. Users

have the option to choose a channel to add the reminder to, set a message that will be sent to the user’s phone which

and a time to send the reminder at. The reminders panel displays the a list of created reminders as well as the time

they will be sent.
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Figure 5.6: View and edit all reminders that have been created for the system

5.2 Real-Time Energy Chart Pane

Energy usage can be viewed in multiple formats. When the user firsts loads the application they are presented with a

pie chart that shows the cumulative energy usage of the entire system. Figure 5.7 shows the energy usage of 5 subsets

that one might see in a standard household. In this chart, the Kitchen is using the most energy usage which makes

sense given that appliances like the refrigerator are always using energy. Energy usage charts can be configured in a

multitude of ways. Figure 5.7 shows the data as a pie chart where each of the segments represent the percentage of the

total energy usage being used by each group. However, this same data could be shown as one of three other chart types

including line and bar charts as well as a sunburst diagram. Furthermore, each chart type has additional options that

can be toggled. For example, the pie chart can be configured to display as a donut or show the individual percentages

of the members in each group.
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Figure 5.7: View the cumulative energy usage in real time

Real-time energy usage charts can be created and configured using the create a chart form. Similar to creating a

group, Figure 5.8 allows users to choose any number of channels, monitoring devices and subsets. When creating a

real-time chart, users can choose a chart type from the aforementioned chart types and enable any options that they

would like to have enabled. Finally they can choose a chart name. Charts can be selected from a list using the burger

menu found in the top left of the chart pane.

Figure 5.8: Create a new chart to visualize a subset of energy usage data in real time
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5.3 Historical Chart Pane

The historical chart pane is aesthetically very similar to the real-time chart pane. The default historical energy usage

chart shows the cumulative energy usage of the system over the past week as a line chart as seen in Figure 5.9. The

cumulative historical chart will automatically attempt to group data points in order to obtain the average for a day. If

the historical usage was displayed for the period of a couple of months, then the algorithm will get the average over a

week in order to reduce the network traffic and data processing.

Figure 5.9: View the historical energy usage

Similar to creating a real-time chart, creating a historical chart has the same general layout. However, users are

also able to choose a date range as seen in Figure 5.10.
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Figure 5.10: Create a new chart to visualize a subset of energy usage data over time
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Chapter 6

System Design

Synergy is a combination of both frontend and backend components. The main system runs on an array of Raspberry

Pis (RPi) [17]. We specifically used Rasberry Pi 3B+ for our system, however any Rasberry Pi or other Linux-

compatible system would work as well. These mini computers have been modularized, creating an expandable system.

Each RPi connects to an AC current monitor which can detect the energy usage of connected devices. Synergy also

provides users with a web based visualization platform along with a web server to manager data flow.

6.1 Architecture Design

Synergy is a data-centric system. The energy usage is monitored by individual AC monitoring units which broadcast

energy usage data to a central processing unit over a local area network through MQTT [11]. By using a centralized

database, we are able to keep the data localized which provides increased protection of secure data and increases the

speed at which we can provide updates and statistics. The database can also be configured to back up to an AWS

MySQL database for increased historical usage storage [2]. The manager then processes the incoming data in order to

respond to user requested notifications and determine whether a device is malfunctioning. Figure 6.1 illustrates how

each current monitoring device wirelessly connects to the manager and how the manager interfaces with connected

databases.
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Figure 6.1: Data Centric Architecture

6.2 Hardware Design

Each AC monitor consists of two components; the energy monitor and a Raspberry Pi that publishes the data to the

server. The AC current monitoring device we have chosen has a max error rate of 5%, and has a built in I2C interface

that allows it to be connected to a Raspberry Pi [1]. The AC current monitor shown in Figure 6.2 has the ability to

monitor up to 2 channels, however, AC monitors are available in configurations up to 12 channels. to In order to ease

the user experience, monitoring boards can be connected directly to individual outlets or into the electrical switch box

of a building. This means that it could be used to monitor the energy usage of 12 devices, or just 12 connected lines,

where each line has a maximum current throughput of 20 amps. While monitoring occurs passively within the sensor,

the connected Raspberry Pi will query each connected device’s current 2 times per second. This allows us to process

the energy usage in real time.
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Figure 6.2: Hardware Configuration

6.2.1 Hardware Specifications

Synergy’s monitoring system, as aforementioned, runs on an array of Raspberry Pis (RPi). Each mini-computer

operates using a custom Unix based operating. Furthermore, in order to converse with the current monitors, the RPis

are integrated with a multitude of IOT protocols that allow for further smart home integration.

Raspbian OS

Raspberry Pis come configured with Raspbian OS [18], a custom Unix based operating system. This OS has Python

installed by default. Furthermore, it supports most Unix based commands which will allow for ease of development

and a simple set up in production.

I2C Protocol

Inter-Integrated Circuit (I2C) [8] is a protocol designed to connect input-output interfaces in simple circuit installations.

Each AC current monitor comes with I2C built in and allows for seamless communication between it and the RPi.
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6.2.2 MQTT

The energy usage is monitored by individual AC monitoring units which broadcast energy usage data to a central pro-

cessing unit over a local area network through MQTT [11], which is a machine-to-machine communication protocol.

The manager then processes the incoming data.

6.3 Backend Architecture

6.3.1 Overview

Figure 6.3: What happens to an energy usage data point as it is received

Synergy’s frontend application has very little interaction with the backend. The backend consists of two components;

the manager and the monitor. The manager processes incoming energy usage data from AC monitors not will access

monitoring data from a Unix processing unit running on a Raspberry PI. This processor will enable queries to be

forwarded from the React app so as to populate the data visualization graphs. As such the backend encompasses both

the processing done on the data as well as the data storage. Furthermore, each individual Raspberry PI connected

current monitor will be running a similar program designed to pull usage data and send it to the processing unit.
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6.3.2 Technologies Used
Python

Python [16] is a scripting language known for its simple syntax and high readability. It enables developers to do more

in fewer steps compared to other programming languages. Python comes pre-installed on Raspberry Pis and has little

overhead. Synergy uses python in both the modular AC monitors as well as the manager which processes the data

gathered from each monitor. Using the same language between backend components allowed for tighter coupling

between modules and shared components.

Twilio

Twilio [42] is a cloud communications platform that was used in Synergy in order to enable SMS messaging. Through

the messaging, we were able to send user-requested notifications, as well as alerts when energy abnormalities or

inconsistencies were detected in a user’s device.

Scikit-learn

Scikit-learn [34] is a machine learning library that was used to implement a one-class support vector machine (SVM).

An SVM is used because the nature of our system does not easily allow for faulty data to train on. So instead, it

is essentially able to generalize what a class of “good” data looks like at a certain time, and if a data point deviates

too much from that, then Synergy sends a notification to the user which is possible due to the Twilio API. The SVM

creates a new model for each channel once a week by training on all of the historical data gathered for that channel

since the system was activated.

MySQL

MySQL [12] is the premiere SQL compliant relational database. A relational database is a table-based database which

stores data in what looks like massive tables. This type of system is best used when you know what the structure of

the data is going to look like. A system like this will allow us to store millions of data samples for both reference and

visualization as well as using historical data samples for prediction.

Amazon Web Services: MySQL

At 2 samples per second, the system can generate store upwards of 170 thousand samples every day which will

eventually turn into a massive database. Amazon Web Services (AWS) provides cloud MySQL database access to the

same database structure without having to store the data on local drives [2]. This will enable Synergy to store all of its

accumulated data which can then be accessed if a user would like to see their usage history.
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6.4 Frontend Architecture

6.4.1 Overview

Synergy provides the user with a web-based visualization platform, which is built using React and Redux. Charts are

rendered using a React-based charting library called Nivo charts.

In order to facilitate data transmission between the UI and the central database, we designed a web server that

uses a combination of a RESTful API and web sockets, which provide a persistent connection between a client and

a server. The web server was built using express.js in order to simplify route handling. The UI, server and database

communicate openly through an NGINX reverse proxy.

Through the User Interface, a user is able to view the energy usage of any single device or subset of devices that

they have manually grouped together. Energy usage can be view in numerous formats including individual statistics,

and graphical charts. Charts can be chosen and configured on a per chart basis. Furthermore, the user can choose to

view the real time usage or historical usage.

Figure 6.4: Interactions between the user interface and web server

The user interface works in conjunction with the web server in order to provide the user access the the data needed

to operate the system. Whenever updates are made to the database, the UI performs a system sync in order to keep

a record of the latest information available. The web server also manages any active sockets that the UI is using.
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Furthermore, the UI attempts to keep further processing to a minimum by storing the real-time and historical usage

data in a format that all of its charts can use.

6.4.2 Technologies Used

Synergy requires an internet enabled display for both configuration and visualization. The user facing application is be

built for web browsers but future implementations can be modified for mobile devices. It is built on Javascript using a

combination of NodeJS and ReactJS (referred to as Node and React respectively) frameworks to provide a functional

yet simple interface.

Javascript

Javascript [9] is a scripting language that was initially developed for web browsers. This is what makes web browsers

interactive. Not only does it provide the ability to develop interesting animations and interactions, it also allows for

dynamic element generation and auto refreshing of page content. This is the core concept behind React.

ReactJS Framework

React [19] uses a virtual document object model (DOM) in order to identify what components of the web page have

changed in an attempt to lessen the load of page updates. This framework enables Synergy to run continuously and in

real-time without causing impacts to performance or inundating the web server.

NodeJS Framework

React is built on Node [14] which is a run-time environment for Javascript enabling it to run as a standalone system

rather than purely browser based. Node gives us access to a multitude of additional libraries such as the ability to

create dynamic charts or using pre-built methods to manipulate the date. These libraries can be used in conjunction in

order to increase performance and provide stable visualization platform.

Socket.IO

Socket IO is a web socket implementation designed for NodeJS [38]. Sockets allow Synergy to stream real time data

from the backend to the user interface. Multiple streams can be created in parallel. Sockets are typically used for

messaging platforms and other types of systems that require realtime data transference.

ExpressJS Framework

In order to relay information from the backend to the frontend, we developed an Express web server [6]. Express

allows the user facing application to request specified information such as the energy usage data between two dates as

well as stream real-time data from the database. It also serves the visualization application by sending a specified data

31



set to the user’s browser. Although later versions of Node provide the ability to create a web server, Express simplifies

route handling allowing us to access the Synergy database at different points with ease.

Development, Staging and Production

Node also enables environment based development. We used a combination of Babel, SASS and Webpack in order to

build the user facing application. These libraries were used solely for development and are not required in the final

version that is delivered to the customer allowing us increase the rate of development. Once the app has the minimal

functionality, we used what is known as a staging environment to test it with the rest if the system. This is typically

the final step before releasing the app to consumers. However, we also used this environment to test new features as

they came out of development. Our final application fits into the last environment: production which is considered the

most stable version available.

6.5 Design Rationale

The initial concept for this project was primarily an energy monitoring system however, upon researching similar sys-

tems on the market, we found that any brand name devices that could monitor energy usage also had an accompanying

visualization software with few to no APIs to access said data. In discovering this, we quickly realized we would not

be able to create an energy visualization tool without any data to visualize. Thus, we decided on building both the

monitoring and visualization framework.

Because the initial system requirements were so broad, we had a large range of options to choose from regarding

technologies, frameworks and libraries. In the end we decided to play to our strengths. Both of us had experience

using both Javascript and Python and one of us had used React in a multitude of Projects. This led us to choose a

project structure with these language constraints in mind.

The outcome of these experiences lead to Synergy which combines both the frontend Javascript experience with

the python backend processing experience. The frontend app is designed to interface the system directly with users. It

allows actors to configure, view, monitor and review their energy usage. The backend processes all of the data received

from the AC current monitors into a usable format. It also identifies trends and patterns for the benefit of the user.

6.5.1 React vs. Other Javascript UI Frameworks

• React: The group has the most experience with this framework. It provides an easy, structured way to build

state-based components with decreased overhead from the server.

• Angular: Uses a model-view-viewmodel system that has a steep learning curve and added complexity that was

out of the scope of this project [3].
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• Vue: Lack of support and English language documentation would make learning difficult. Furthermore, the

community is small and it would be difficult to find sample use cases [43].

6.5.2 ExpressJS vs. Other Web Frameworks

• ExpressJS: Provided the perfect out of the box environment for a project of this size including a basic web

server, routing and database functionality without restricting development flow.

• Django: Provides too much out of the box functionality and requires you to use all of their built-in functionality

otherwise it won’t work correctly [4].

• Flask: Provides too little out of the box functionality requiring a much of the simplicity provided by ExpressJS

to be custom built for the project [7].

6.5.3 MySQL vs. Other Relational Databases

• MySQL: Easily allows storage of large data sets including both relational and object based data. Also has

simple integration with AWS cloud services.

• SQLite3: All data is stored on local drives meaning we would have to use 2 different databases in order to use

a cloud based database in conjunction with our local one [39].

• PostgreSQL: Although this is very similar to MySQL, we decided against it do it its lack of updates and

extensibility [15].
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Chapter 7

System Test Design

To ensure that our system behaves correctly in a multitude of environments, we tested the code in a controlled environ-

ment by setting up a differentiation between the the development realm and staging realm. This allows us to continue

to run the system since early January of 2019, a period of approximately 5 months. This early testing phase was the

staging environment and consisted of code that had been finished and was ready for testing as part of the larger system.

Meanwhile, the development environment was used for code that was still in development.

7.1 System Analysis

Throughout our staging period of approximately 5 months, the project highlighted some potential issues that may need

to be addressed in later iterations of the project past our projected completion date.

First, the system is only capable of measurements that use roughly a minimum of 100mA and a maximum of 20A.

However, most house hold devices do not come close to using this maximum. The only issue would be if the system

were to be installed in a large building’s electrical panel. However, due to the scale that the system was tested at, this

issue has a low risk.

Secondly we noticed that the system generates approximately 800 kilobytes per second that a device is power on.

The data processor and user interface is designed to handle large data sets however, there is a limit to how much data

should be being sent over the network. No one wants to have to wait for over 10 minutes while their browser receives

over a gigabyte of data.

Lastly we recognize that this large amount of data can become extremely processor intensive. Although the system

itself is modular, it is worth noting that in order to scale, the server than the manager runs on also needs to be scaled

appropriately. In large setups, it might be prudent to also create system redundancies and fail-safes so that there is not

a single point of failure.
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7.2 Developmental Testing

In order to test our code we used a combination of white-box and black-box testing. Unit testing is a form of white-

box testing that requires knowledge of how the system works on a programmatic level. Unit testing often involves

a combination of testing the inner workings of functions and the return values of those functions. It also allows for

snapshot testing which essentially stores a snapshot of the return value to match against. Snapshot testing is particularly

good for large data sets and complex components, both of are commonplace in our project.

7.2.1 Javascript

For Javascript unit testing, we used Jest [10]. Jest is a unit testing framework developed for Javascript applications. It

can test standard function calls, return values and is snapshot testing enabled. It also has features for module mocking

which allows us to use fake components for predictable testing environments. Furthermore it comes with built in code

coverage assessment tools which enabled us to check how well we are testing the system during development.

7.2.2 Python

For our Python development, we conducted unit testing using PyTest [26]. PyTest is a unit testing framework de-

veloped for Python applications. It is extremely similar to Jest with built in tools for standard unit testing, snapshot

testing.

7.3 Usability Testing

User satisfaction is essential to the success of our system. Because of this, we generated test cases based on how a

user will interact with the system in conjunction with our testing as the developers. To test the usability of our system,

we used black box testing, in which the information about the code is ignored and the specification of the system is

the driving force. We checked whether a select set of inputs produce the desired outputs, which we formulated using

the use cases outlined in chapter 3.

7.3.1 Test Cases

• User can login to reach dashboard

• User can successfully activate a device

• User can view energy usage information from dashboard

• User can rename the channel of added device

• User can request notifications and receives notification when triggered
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• User can receive notifications when a faulty channel is detected

• User can activate a second device

• User can group the two or more devices into one subset

• User can view the energy usage of the subset

• User can view the total energy usage of their devices

• User can view their past energy data gathered by system

7.4 System Testing

Although the use case and usability testing works well in the short run, the large amount of data that the system

generates means that we needed to make sure that the system would be able to function as it was used on a larger scale.

Using a selection of mock data, we ran a series of soak tests to see how the system would handle itself in high stress

situations such as receiving energy monitoring data from over 20 devices at a time. Other types of soak tests included

having many simultaneous real-time streams, increasing the amount of clients accessing the system at one time as well

as requesting long periods of data for the historical charts.

Unfortunately, we were only able to use mock data for these soak tests due to having a limited amount of time to

use the system, having a limit number of monitoring devices to test with as well as having a limited budget. In order

to overcome some of these limitations, we collected user feedback about how the system operated under some of their

custom test cases. As more and more features became available. The user feedback became a loop so that we could

constantly adjust in order to provide the best user experience.
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Chapter 8

Project Timeline

In order for our development to run as smoothly as possible, we created a timeline to use as a reference point for what

we should have accomplished throughout the three quarters we worked on this project. Each quarter had different

deliverables that had to be completed, along with general progress on our system. By sticking to this layout, we

had enough time to address any issues that arose. Deviating from this timeline and not meeting the deadlines we set

for ourselves could have prevented us from creating the high quality product we aimed to produce. As such, it was

important that we follow the project timeline as closely as possible.

Both
Sarah
Pearce

Figure 8.1: Legend for Development Timeline

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10
Deliverables
Problem Statement
Grant Proposal
Design Report

Implementation
Research
System Environment
Application Environment
Database Set up
UI/UX Design

Figure 8.2: Fall Development Timeline
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Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10
Deliverables
Design Review
Revised Design Report
Operational System

Implementation
Hardware
Set up Environment
Configuration
AP Networking
Frontend
Settings
Dashboard
User Account
Administrator Account
Backend
Database integration
Processing
RPi Communication
Networking

Testing
Unit Testing
Acceptance Testing

Figure 8.3: Winter Development Timeline

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10
Deliverables
Design Conference
Final Project Report
Completed Implementation

Implementation
Frontend Refactoring
Backend Refactoring
Hardware Refactoring

Testing
Acceptance Testing
Usability Testing

Figure 8.4: Spring Development Timeline
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Chapter 9

Risk Analysis

Before working on the development phase of this system, we identified and compiled possible risks related to the

project. In Table 9.1 we consider how likely the risk was to occur, how severe the consequence would be, and the

impact it would have in our implementation of the system along with the consequences they hold. The impact of each

risk is calculated as the probability ∗ severity. Finally, we identify strategies that could be used to mitigate the issue,

either by lowering the probability of it occurring or by taking precautions to minimize the severity the risk poses.

Of the risks we identified, the largest risk that became a reality was bugs. Some of the bugs that arose significantly

delayed our progress, especially since our source code ultimately ended up being more than 7,000 lines of code.

Searching for bugs in this large of a code base was definitely an issue. However, we were able to overcome these bugs

and complete our implementation on time.

Similarly, while we had enough funding to complete our system implementation, we would have preferred if we

had more funding so that we could test our system on a larger scale, as we were only able to test the scalability of it

with three devices connected to one central processing hub. However, we were able to accomplish our goals with the

funding we did have.
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Risk Name Consequences Probability Severity 

(0-10) 

Impact Mitigation Strategies 

Bugs • Delays progress 

• May cause 

system to stop 

working 

0.9 4 3.6 • Prioritize bugs that 

appear 

• Design the system in 

a modular way  

Interfacing 

problems with 

hardware 

• Entire system 

redesign 

• Project may not 

be completed 

0.2 10 2 • Research 

compatibility prior 

to development 

• Research backup 

alternative options 

• Continue frontend 

development and 

use mockup 

database if problem 

persists 

Not meeting 

deadlines 
• Rush to catch up 

would lower 

overall quality of 

work 

• System may not 

be finished 

0.5 9 4.5 • Keep teammate 

updated on progress 

• Avoid 

procrastinating 

• Cut less important 

features 

Inexperience 

with 

technologies 

• Delay in 

progress because 

of time spent 

learning 

technologies 

• Lower quality of 

work because 

lack knowledge 

of details 

0.7 5 3.5 • Use technologies at 

least 1 team member 

has experience with 

• Assign tasks 

according to 

strengths 

• Reference 

documentation when 

encountering issues 

Insufficient 

funding 
• Unable to 

implement full 

functionality 

• Unable to finish 

project 

0.3 9 2.7 • Purchase only as 

much is needed to 

be operational 

before expanding 

scope 

• Cut features 

• Scale down project 

Figure 9.1: Risk Analysis
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Chapter 10

Applications

Synergy has numerous applications across the board in terms of both environmental and economic impacts. Buildings

are responsible for 40% of the energy usage on the planet and up to 30% of the carbon dioxide (CO2) [20] released.

Increased energy usage monitoring could lead to reductions in energy usage and the costs of energy usage, particu-

larly by informing consumers about their energy consumption behaviors and informing producers of patterns in their

devices’ energy consumption that could be altered for a smaller carbon footprint. Furthermore, it could also influence

smart grid systems in an effort to modernize the currently outdated electrical infrastructure.

10.1 Use Cases

Some of the potential use cases include:

• The ability to influence behavioral patterns to reduce energy consumption

• The ability to pinpoint faulty devices for replacement

• The ability to alert on energy spikes or short-circuits

• The ability to integrate with smart home technology to run automated routines based on energy usage patterns

• The ability to identify small changes that each of us can take to reduce our overall energy footprint

10.2 Energy and Cost Reductions

Synergy allows a clear view into the metrics of different energy-demanding appliances. For example, Synergy is

able to reveal the difference in performance metrics when altering your lighting settings. As shown in Table 10.1, by

dimming the lights of an overhead light source by 10% in an otherwise dark room, the illuminance is only reduced by

4.71% while the energy consumption is reduced by 10%. This results in a net decrease of 10% in terms of the cost

of the electricity used (assuming $0.1.488 per kilowatt hour (kWh)) over a 30 day period. The table only measures
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Table 10.1: Decrease in light brightness to kWh/Cost Ratio

Brightness Lux Current kW (1h) kW (7h/day per month) Cost
100% 170 0.442 0.05304 11.1384 $1.168
90% 162 0.398 0.04776 10.0296 $1.052
80% 152 0.355 0.04260 8.9460 $0.938
75% 146 0.323 0.03876 8.1396 $0.854
50% 107 0.204 0.02448 5.1408 $0.539
25% 50 0.086 0.01032 2.1672 $0.227

the consumption of a single room using smart LEDs. However, incandescent or florescent light bulbs would use more

energy thus increasing the costs. If this metric were taken into account in a larger setting, such as an apartment (avg.

1200sqft), household (avg. 2600sqft), or office building (avg. 19,000sqft), potentially hundreds of dollars could be

saved by just dimming the lights by 10%.

Furthermore many office buildings generally require lights to be left on at night, and without smart lighting, this

means that despite vastly different internal lighting demands during the night and day, the same amount of energy is

consumed at any time. By switching to smart lighting, managers of these buildings would be able to configure their

lights specifically for the different demands of lighting throughout the day. Likewise, since Synergy relies on open

protocols, it can be interfaced with different IoT devices such as cameras, Amazon Alexa, and thermostats to detect

user activity and adjust light intensity automatically.

10.3 Smart Grid

Synergy’s platform is focused on providing more information to the consumer, enabling better communication about

how users can save on their energy usage as well as giving utility providers increased insight into how consumers are

using the energy provided. This concept has been coined as Smart Grid, which consists of a series of new computing

and automation technologies that monitor the energy grid in order to provide improvements in energy management

[22], energy costs and increased integration of renewable energy sources like solar and wind power [36]. The current

power grid in the United States was designed and built over 100 years ago during a time when most residences only

needed enough electricity to power a few light bulbs and a radio. “Today, an electricity disruption such as a blackout

can have a domino effect – a series of failures that can affect banking, communications, traffic, and security” [36].

The Smart Grid engages in two-way communication between a consumer’s home and the energy grid. Synergy

is designed to seamlessly integrate with existing systems so its wide breadth of communication technologies coupled

with its modularity and scalability make it a prime target for usage in a Smart Grid setting. Energy monitoring by the

consumer allows users to see exactly how much power is used and how much it costs. Furthermore, consumers will

be more inclined to decrease power consumption when they can see how much the energy is costing them while using

it instead of a final sum at the end of the month. Smart Grid technologies also help to significantly reduce the peak
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demand for energy usage which is a period of time when electricity is expected to be sustained at a higher than average

level [44]. Many electricity providers charge consumers based on peak demand pricing. However, the introduction

of smart monitoring systems like Synergy allows for dynamic pricing [37] because energy providers can more easily

predict and provide for the energy requirements of peak demand [30]. Moreover, individual contributors can better

manage their individual energy usage during peak times in order to cut down on their costs.

10.4 Denial-of-Service Detection

Another possible application of Synergy is denial-of-service detection. DoS attacks attempt to flood a network with an

overwhelming amount of traffic with the aim of making the services or resources provided by the network unavailable.

Early stage DoS detection is extremely difficult, despite an abundance of research into detection techniques [28].

Energy monitoring introduces new opportunities to DoS detection in IoT devices. Because of the increased load on

the device, more power is consumed. While the increase is too small to be noticed on the AC monitor that Synergy

currently uses, it is possible that a monitor designed for reading low-power devices could be substituted and accurately

detect irregular increases in energy consumption, indicating a DoS attack. This is something we hope to develop in

the future.
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Chapter 11

Societal Considerations

11.1 Ethical

Beyond the financial gain that individuals and businesses can gain from employing an energy monitoring platform,

there is also an ethical duty of stewardship to consider. In 2017, about 34% of the total U.S. energy-related carbon

dioxide (CO2) emissions were emitted by the U.S. electric power sector [32]. CO2 emissions contribute to global

warming, which has the potential to be extremely disruptive to our global climate [25]. It is essential that CO2

emissions are reduced, especially given that the “impact of carbon emissions persists longer than that of nuclear

waste” [29]. If the issue of greenhouse gases is not addressed now, it may not be addressed in time. Energy monitoring

can play a role in minimizing greenhouse gases by giving individuals the extra push to reduce their carbon footprint

- even if their intentions are to save money. Seeing their usage in real-time may also influence more users to pursue

alternative forms of energy - such as solar power - which has a smaller carbon footprint than natural gas or coal, which

are the two largest energy sources[31].

11.2 Social

Who should have access to your energy data? Privacy is a major social concern that we discovered while implementing

Synergy, primarily due to the different privacy expectations in work environment than high-density home environment.

Our current system only has one type of user. This is suitable in single-resident home environment, where there would

be a limited number of users wanting to see their data, as well as in work environments where someone like the

facilities manager would be expected to see the details of usage. But in high-density home environments, like an

apartment complex, you wouldn’t want your landlord to see the details of your usage - but they would likely benefit

from seeing the combined usage of all residents and historical trends. So with more time, a differentiation between

account types would certainly be implemented.
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11.3 Political

Our hope is that communities could come together to discuss how they could lower their carbon footprint based on the

data gathered from Synergy. However, in order for that to be effective, Synergy would need to be implemented on a

large scale, and communities would have to decide what actions to take based on the data.

11.4 Manufacturability

The system can easily be built, as we have implemented it fully. The largest cost factor is the AC monitoring boards

that are used to measure each channel, especially when it is sized up to measure more channels. However, if we were

to manufacture this for production, we would look into manufacturing the AC monitoring boards ourselves to cut down

on the cost of the system. Likewise, while we utilized a Raspberry Pi 3B+, however to lower the cost, a Raspberry Pi

Zero with Wi-Fi capabilities could be use instead, or any other Linux-compatible hardware.

11.5 Sustainability

Our system is sustainable in two ways - first, in being a sustainable, durable system. Synergy is open source, which

allows the software to be modified and updated as needed. Likewise, it is not dependent on any specific hardware. It

can use whatever is accessible to the user, and again, can be modified or updated as needed. In this way, the system

will ideally not become easily outdated and can sustain over time. Secondly, our system supports sustainability in the

traditional, environmental sense, which is discussed in the following Environmental Impact section.

11.6 Environmental Impact

The primary reasoning behind developing Synergy is to help users build habits to reduce their carbon footprint and

live more sustainably. 34% of the total U.S. energy-related CO2 emissions were emitted by the electric power sector

[32]. Placing energy management solutions in the hands of consumers enables them to actively institute measures for

saving energy and serve their role in lowering global carbon emissions contributing to climate change.

11.7 Usability

Environmental stewardship is a global responsibility. Because of this, everyone needs to be conscientious of their

electricity usage. In order to make this possible, we designed Synergy with usability in mind so that usage of the

system could be widespread, not limited to only those extremely proficient in technology. Our hope is that anyone

could customize their dashboard in a way that is meaningful to them - whether showing kWh or cost - and seamlessly

integrate the system into their lifestyle to make non-invasive changes to their daily habits.
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11.8 Lifelong Learning

Designing and implementing Synergy gave us an unmatched hands-on engineering experience. We had to understand

the technologies we used for Synergy more than any undergraduate class prepared us for. However, it has inspired

us to delve deeper into technologies we utilized, and to stay up to date on the latest technologies in order to continue

to develop the best systems possible. Learning never stops, and Synergy has given us the courage to take our future

learning into our own hands.
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Chapter 12

Conclusion

Synergy is an energy monitoring solution that is designed to be scalable for any situation in which energy monitoring

could be used to decrease energy usage and energy costs. Although this paper discusses how Synergy was implemented

using Raspberry Pi board, it could be implemented using any Linux-based hardware components. Furthermore, its

system is not locked to any one environment as it utilizes libraries and frameworks that are available across most

programming languages. In addition to this, Synergy is open-source which allows any user to adapt it to their needs or

contribute to improving it. As mentioned previously, Synergy’s reliance on open protocols enables it to be integrated

with various IoT devices, which is an ability that open-source development could expand upon.

It is also worth noting that Synergy can be deployed with any number of monitors, managers, and servers, just like

the majority of modern web-based platforms. It can be used in residential homes, but also in larger complexes such as

university, campuses, and office buildings. It can also be used by appliance producers to reduce their per device power

usage requirements. Likewise, it could be implemented by local utility companies to obtain a better understanding of

how electrical energy is being used in their community. There are very few limits to where Synergy can be used the

effect that it can have on the community that uses it. Despite its passive nature, its use attempts to change behavioural

patterns so as to reduce the carbon footprint that is indicative of electrical energy usage across the globe.
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Appendix A

Source Code

Due to its size and complexity, all of the source code is available at https://github.com/synergy-scu.
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