32 research outputs found

    Cycle and Circle Tests of Balance in Gain Graphs: Forbidden Minors and Their Groups

    Full text link
    We examine two criteria for balance of a gain graph, one based on binary cycles and one on circles. The graphs for which each criterion is valid depend on the set of allowed gain groups. The binary cycle test is invalid, except for forests, if any possible gain group has an element of odd order. Assuming all groups are allowed, or all abelian groups, or merely the cyclic group of order 3, we characterize, both constructively and by forbidden minors, the graphs for which the circle test is valid. It turns out that these three classes of groups have the same set of forbidden minors. The exact reason for the importance of the ternary cyclic group is not clear.Comment: 19 pages, 3 figures. Format: Latex2e. Changes: minor. To appear in Journal of Graph Theor

    Nonequilibrium statistical mechanics and entropy production in a classical infinite system of rotators

    Get PDF
    We analyze the dynamics of a simple but nontrivial classical Hamiltonian system of infinitely many coupled rotators. We assume that this infinite system is driven out of thermal equilibrium either because energy is injected by an external force (Case I), or because heat flows between two thermostats at different temperatures (Case II). We discuss several possible definitions of the entropy production associated with a finite or infinite region, or with a partition of the system into a finite number of pieces. We show that these definitions satisfy the expected bounds in terms of thermostat temperatures and energy flow.Comment: 36 page

    On graph classes with minor-universal elements

    Full text link
    A graph UU is universal for a graph class C∋U\mathcal{C}\ni U, if every G∈CG\in \mathcal{C} is a minor of UU. We prove the existence or absence of universal graphs in several natural graph classes, including graphs component-wise embeddable into a surface, and graphs forbidding K5K_5, or K3,3K_{3,3}, or K∞K_\infty as a minor. We prove the existence of uncountably many minor-closed classes of countable graphs that (do and) do not have a universal element. Some of our results and questions may be of interest to the finite graph theorist. In particular, one of our side-results is that every K5K_5-minor-free graph is a minor of a K5K_5-minor-free graph of maximum degree 22

    Alliance polynomial and hyperbolicity in regular graphs

    Get PDF
    One of the open problems in graph theory is the characterization of any graph by a polynomial. Research in this area has been largely driven by the advantages offered by the use of computers which make working with graphs: it is simpler to represent a graph by a polynomial (a vector) that by the adjacency matrix (a matrix). We introduce the alliance polynomial of a graph. The alliance polynomial of a graph G with order n and maximum degree δ_1 is the polynomial A(G; x) = ∑_(k=〖-δ〗_1)^(δ_1)▒〖Ak(G) x^(n+k) 〗, where A{_k}(G) is the number of exact defensive k-alliances in G. Also, we develop and implement an algorithm that computes in an efficient way the alliance polynomial. We obtain some properties of A(G; x) and its coefficients for: • Path, cycle, complete and star graphs. In particular, we prove that they are characterized by their alliance polynomials. • Cubic graphs (graphs with all of their vertices of degree 3), since they are a very interesting class of graphs with many applications. We prove that they verify unimodality. Also, we compute the alliance polynomial for cubic graphs of small order, which satisfy uniqueness. • Regular graphs (graphs with the same degree for all vertices). In particular, we characterize the degree of regular graphs by the number of non-zero coefficients of their alliance polynomial. Besides, we prove that the family of alliance polynomials of connected ∆-regular graphs with small degree is a very special one, since it does not contain alliance polynomials of graphs which are not connected ∆-regular. If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in the δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) := inf{δ >= 0 : X is δ-hyperbolic }. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. We obtain information about the hyperbolicity constant of cubic graphs. These graphs are also very important in the study of Gromov hyperbolicity, since for any graph G with bounded maximum degree there exists a cubic graph G* such that G is the hyperbolic if and only if G* is hyperbolic. We find some characterizations for the cubic graphs which have small hyperbolicity constants. Besides, we obtain bounds for the hyperbolicity constant of the complement graph of a cubic graph; our main result of this kind says that for any finite cubic graph G which is not isomorphic either to K_4 or to K_3,3, the inequalities 5k/4 <= δ (G ̅) <=3k/2 hold, if k is the length of every edge in G. --------------------Uno de los problemas abiertos en la teoría de grafos es la caracterización de cualquier grafo por un polinomio. La investigación en este área ha sido impulsada en gran parte por las ventajas que ofrece el uso de las computadoras que hacen que trabajar con grafos sea más simple. En esta Tesis introducimos el polinomio de alianza de un grafo. El polinomio de alianza de un grafo G con orden n y grado m´aximo δ_1 es el polinomio A(G; x) = ∑_(k=〖-δ〗_1)^(δ_1)▒〖Ak(G) x^(n+k) , donde A{_k}(G) es el n´umero de k alianzas defensivas exactas en G. También desarrollamos e implementamos un algoritmo que calcula de manera eficiente el polinomio de alianza. En este trabajo obtenemos algunas propiedades de A(G; x) y sus coeficientes para: • Grafos caminos, ciclos, completos y estrellas. En particular, hemos demostrado que se caracterizan mediante sus polinomios de alianza. • Grafos cúbicos (grafos con todos sus vértices de grado 3), ya que son una clase muy interesante de grafos con muchas aplicaciones. Hemos demostrado que sus polinomios de alianza verifican unimodalidad. Además, calculamos el polinomio de alianza para grafos cúbicos de orden pequeño, los cuales satisfacen unicidad. • Grafos regulares (grafos con todos sus vértices de igual grado). En particular, se caracteriza el grado de los grafos regulares por el n´umero de coeficientes distintos de cero de su polinomio de alianza. Además, se demuestra que la familia de polinomios de alianza de grafos conexos _-regulares con grado pequeño es muy especial, ya que no contiene polinomios de alianza de grafos conexos que no sean _-regulares. Si X es un espacio métrico geodésico y x1, x2, x3 ∈ X, un triángulo geodésico T = {x1, x2, x3} es la unión de tres geodésicas [x1x2], [x2x3] and [x3x1] de X. El espacio X es δ-hiperbólico (en el sentido de Gromov) si todo lado de todo triángulo geodésico T de X está contenido en la δ-vecindad de la unóon de los otros dos lados. Se denota por δ(X) la constante de hiperbolicidad óptima de X, es decir, δ(X) := inf{δ > 0 : X es δ-hiperbólico }. El estudio de los grafos hiperbólicos es un tema interesante dado que la hiperbolicidad de un espacio métrico geodésico es equivalente a la hiperbolicidad de un grafo más sencillo asociado al espacio. Hemos obtenido información acerca de la constante de hiperbolicidad de los grafos cúbicos; dichos grafos son muy importantes en el estudio de la hiperbolicidad, ya que para cualquier grafo G con grado máximo acotado existe un grafo cúbico G∗ tal que G es hiperbólico si y sólo si G∗ es hiperbólico. En esta memoria conseguimos caracterizar los grafos cúbicos con constante de hiperbolicidad pequeña. Además, se obtienen cotas para la constante de hiperbolicidad del grafo complemento de un grafo cúbico; nuestro principal resultado dice que para cualquier grafo cúbico finito G no isomorfo a K4 o K3,3, se cumple la relación 5k/4 <= δ (G ̅) <=3k/2, donde k es la longitud de todas las aristas en G.Programa de Doctorado en Ingeniería Matemática por la Universidad Carlos III de MadridPresidente: Domingo de Guzmán Pestana Galván; Secretario: Eva Tourís Lojo; Vocal: Sergio Bermudo Navarret
    corecore