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ABSTRACT

Spatial arrangements in architecture and mechanical engineering 

are represented by incidence structures and classified according 

to properties of these incidence structures. The relationships 

between classes are given by ornamentation operations and the 

construction of elements in fundamental classes by substructure 

replacement operations. Thus representations of the spatial 

arrangements for possible designs are generated.

Planar maps represent spatial arrangements in architecutral v' 

plans. The edges correspond to walls and vertices to incidence 

between walls. Plans represented by 3-vertex connected maps are 

ornamented by rooting and extension operations. Further ornamen

tation specifies access between regions. Plans with all regions 

adjacent to the exterior correspond to outerplane maps. Trivalent 

maps represent an important class of plans. Fundamental plans with 

r internal regions and s regions adjacent to the exterior are 

represented by [r,s] triangulations. Ornamentations of simple 

[r,s] triangulations are specified which represent plans with 

rectangular regions. Plans with walls aligned along two directions 

are represented by rectangular shapes whose maximal lines correspond 

to contiguous aligned walls. Rules of construction for various 

classes are given and the incidence structures of maximal lines 

and regions are characterized.

Spatial arrangements in machines are represented by systems whose 

blocks correspond to links and vertices to joints. The dual 

systems are also used. Coplanar kinematic chains with revolute 

pairs are classified according to mobility and connectedness.



Two fundamental classes are considered. First, the chains 

with binary joints, represented by simple graphs and constructed 

by two new methods: (i) suspended chain and cycle addition

and (ii) subgraph replacement. Second, the chains with binary 

links which are constructed by subgraph replacement.
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CHAPTER 1

SPATIAL ARRANGEMENTS AND INCIDENCE STRUCTURES

1.1 Spatial arrangements

Herbert Simon in 'The Sciences of the Artificial' (Simon 1969) 

remarks that "Since much of design, particularly architectural and 

engineering design, is concerned with objects or arrangements in real 

Euclidean two-dimensional or three-dimensional space, the representation 

of space and things in space will necessarily be a central topic in the 

science of design". This thesis is concerned with the spatial 

arrangement of elements in architectural and mechanical systems.

There are four steps in the examination of spatial arrangements.

(1) To identify the kinds of elements and provide ways of representing 

the relationships between the elements. This step attends to properties 

which characterise the spatial arrangements.

(2) To provide means of constructing the representations of spatial 

arrangements which possess certain properties.

(3) To produce descriptions of representations.

(4) To combine and transform representations. This step might 

introduce further properties for the spatial arrangements.

The four steps are considered as representation, generation, 

description and ornamentation. Representation and description come 

under the broad heading represention, and generation and 

ornamentation, under construction.

The spatial arrangement of an architectural plan consists in the 

relations among the elements comprising the plan. The arrangement 

depends upon the elements considered, the level of detail at which they 

are specified, and the relations among them. Spatial arrangements in



architectural plans have broadly two kinds of basic element. First 

there are the elements corresponding to lines, that is, walls or 

partitions and second the regions, that is rooms or activity areas. 

Associated with these basic elements are three kinds of relationship.

First incidence of lines, second incidence of regions and lines and 

third adjacency of regions. The adjacency between regions in a plan 

rosy correspond to access between the regions. This type of> adjacency 

provides an access relation between regions. Higher order adjacency 

relations between regions may also be considered in terms of the number 

of regions which separate two regions. This might be called the distance 

relation between regions. If architectural plans are considered whose 

C )  walls lie on grid lines then there is a further relation between the

lines, namely the alignment of walls. This relation imposes the order 

of the grid on the walls.

Elements need not be basic lines or regions. Aggregates of lines 

and regions might compose elements among which relations are defined.

In addition there are multiple types of lines and regions in an 

architectural plan and consequently many relations.

Three dimensional spatial arrangements can also be considered.

(2)/ basic elements are planes and regions. The relations which compose

spatial arrangements are essentially incidence of planes, incidence of 

regions and planes, and adjacency between regions. Similarly to the 

two-dimensional case there can be further relations, including the 

access, distance and alignment relations.

The spatial arrangement in a mechanical design consists in the relations 

among the elements composing the machine. The basic elements in a 

machine are the links or rigid bodies and the relations are the
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connections between links to form kinematic pairs and the grouping of 

kinematic pairs to form joints. This thesis is concerned only with 

these elements and relations and does not address more complex geometric 

aspects of spatial arrangements or the kinematic properties of machines. 

For spatial arrangements in mechanical design there is no way of avoiding 

their essentially three dimensional character. There are, in general, 

no convenient "plans" which may be considered.

The representation of the spatial arrangements in two-dimensional 

architectural plans can be given in terms of graphs which represent the 

incidence structures involved. Graphs embedded on the plane or sphere 

are used because the extra structure due to the embedding allows the 

relative disposition of the elements to be considered. The represen

tation of spatial arrangements on grids is usually in terms of line 

segments on the grid since the order or alignment relation of the lines 

is conveniently represented by the grid itself. However, the alignment 

relation may be incorporated into a graph type represention with 

appropriate labellings. The représentions in three dimensions are 

similar, but the graphs are not necessarily planar, although they are 

considered to be embedded in three-dimensional euclidean space.

The representation of the spatial arrangements in mechanical design 

is in terms of graphs and systems. The incidence of links in kinematic 

pairs may be represented by a graph. The incidence of links at joints, 

that is, collections of kinematic pairs can be represented conveniently 

in terms of systems in which either the joints compose the links, or 

dually the links compose the joints.

For architectural and mechanical designs the representations of 

spatial arrangement provide ways of describing the various incidence



o

patterns between the elements composing the arrangements. In an 

examination of spatial arrangement, attention is focussed on classes of 

incidence pattern which have particular interest in architectural or 

mechanical design. There are two tasks to perform at this stage.

First, to provide means of generating all possible incidence patterns 

in the classes of interest. Thus given a set of characterising 

properties to provide means of generating all incidence patterns with 

the properties. The second task is to examine the characterising 

properties of the classes of incidence patterns and deduce other 

properties which incidence patterns in particular classes will possess.

The two tasks are interdependent. The second may be facilitated by 

the first which in some sense provides the "local structure" of the 

class. Conversely, the first task may require, for elegant or efficient 

generation, the results of the second, which provides the "global 

structure" of the class. The results can be used in three ways.

(1) To produce extensive catalogues of possibilities from which 

selection can be made in design.

(2) To produce constructive procedures whereby incidence patterns 

can be generated in response to particular design requirements.

(3) To indicate subclasses of interest for which characterising .properties 

and means of generation may be established.

In some cases it is possible to enumerate the incidence patterns 

in various classes. This can be useful in several ways. First, the 

production of an enumeration exposes the structure of a class. An 

enumeration might consist of a recursive formula or a generating 

function equation. Second, the result of an enumeration gives the 

sizes of sets from which selection is made in design. Third, the 

comparison of the sizes of classes and subclasses suggests where it
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might be desirable to consider certain classes as combinations and 

transformations of smaller more manageable subclasses.

The means of generation examined in this thesis depend upon 

replacing a sub-pattern in an incidence pattern by another to produce 

a new incidence pattern. For representation by graphs, this takes the 

form of a 'subgraph replacement' operation. For the representation 

of spatial arrangements on grids this may take the form of a 'sub-shape 

replacement' operation.

The incidence patterns constructed in this thesis will usually 

consist of basic classes from which other patterns are obtained by 

ornamentation operations. These are generally of two types.

(1) Combination of patterns, usually by identifying sub-patterns 

in two patterns.

(2) Transformation of patterns by (i) transforming the incidence 

patterns but preserving the types of elements and relations and (ii) 

preserving the incidence patterns but transforming the types of 

elements and relations.

1.2 Graphs; terminology and definitions

A graph G = (V,E) is an ordered pair of sets; the vertices V and 

edges E which consist of unordered pairs of elements of V. There is 

an isomorphism between graphs G = (V,E) and G^ = (V^,E^) if there are 

bijections c{) : V and : E -> E^ such that cj)(e) = ip(e) for all e E E

A subgraph of G = (V,E) induced by V  £ V is the graph G [ V ]  ==

(V ,E') where E' = {e:e £ E n9^(V')}. Also let G[V - V ]  = G - V  .

A subgraph of G = (V,E) induced by E' £ E is the graph G[E'] = (V',E')

where V  = {v v £ e, e £ E '}. A subgraph of G = (V,E) obtained by

removing E ' £ E from G is G - E ' = (V,E - E ').
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A path in a graph G = (V,E) is an ordered set of vertices and 

distinct edges ^^ch that = e^.

A subgraph G[V] of G = (V,E) is connected if each pair of vertices 

belongs to a common path. A maximal connected subgraph G[V'3 of 

G = (V,E) is a component of G. A graph is connected if it has 

exactly one component.

Consider a connected graph G = (V,E). A k-vertex cut in G 

is V' c V, |v* I = k, such that G - V  is not connected. A 

k-edge cut in G is E' £ E ,  |e'| = k, such that G - E' is not

connected. A vertex of degree k corresponds trivially to a 

k-edge cut. A non-trivial k-edge cut in G is E* £ E, [e '| = k, 

such that g Ce - E'] is not connected. G is k-vertex connected 

if there is no k'-vertex cut with k' < k, and k-edge connected 

if there is no k'-edge cut with k' < k. It is non-trivially 

k-edge connected if there is no non-trivial k'-edge cut with 

k' < k.

A path with v^ = v^^^ is a k-cycle and a graph without 1 or 2- 

cycles is simple. A connected graph without cycles is a tree.

1.3 Planar Maps

A topological graph in a 2-dimensional oriented surface S has 

edges and vertices which are disjoint subsets of S and each edge is 

an open arc in S whose endpoints are its incident vertices. If the

topological graph is finite, connected and has at least one edge then

it is called a map. Each component of the complement of a map in 

S is homeomorphic to an open disc and is called a face of the map.

A map M has cells C(M) consisting of the vertices V(M), edges E (M) and

faces F(M). Two cells of different type are incident if one is 

contained in the boundary of the other. Two vertices or two faces are



adjacent if they are incident to a common edge.

Let the ordered set of edges and vertices incident to a face
I

f e F(M) be denoted by B(f), the boundary of the face. Similarly 

let the ordered set of edges and faces incident to a vertex v c V(M) be 

denoted by B(v). Let i(e,f) and i(v,f) denote the number of times 

e e E(M) and v e V(M) respectively, occur in B(f) and define the 

degree or valency of f as ^i(e,f) where the sum is taken over all 

e e E(M). Also let i(v,e) denote the number of times e occurs in 

B(v) and define the degree or valency of a vertex as ^i(v,e) where the 

sum is taken over all e e E(M). Note that i(v,e) < 2 and i(e,f) < 2. 

If i(e,f) = 2 then e is an isthmus and if i(v,e) = 2  then e is a loop. 

Finally, a map in the oriented 2-sphere is called a planar map

A map M in an oriented surface can be represented by a

permutation pair (Tutte 1979). Each edge in E(M) corresponds to two

opposite directed edges or darts. Let 0 be a permutation on the

set of darts D that takes each dart into its opposite. The darts

directed away from vertices occur in cyclic orders which correspond

to the cycles of a permutation P on D. The cyclic orders of darts

which have a given face of M on their right, say, are cycles of the

permutation P 6 on D. Since the graph underlying the map is

connected, P and 0 generate a group of permutations which acts

transitively on D. The permutation pair (P,0) acting on D represents

the map M. Conversely, a permutation pair (P,0) acting on a set D

such that 0 has all cycles of length two and (P,0) generate a group

of permutations which acts transitively on D, represents a map M in

which V(M) corresponds to the cycles of P, E(M) to the cycles of 0

and F(M) to the cycles of P0. The permutation pair (P0,0) acting
*

on D represents another map M , the dual of M. The map M is on a



surface with Euler characteristic |v(M)| - |e(M)| + |f(M)|, and M 

is planar if the Euler characteristic is two. Attention is confined 

to planar maps.

An orientation preserving isomorphism of a planar map M = (P,0) 

acting on D and a map acting on is a bijection

(f) : D ->■ such that for each d e D, (j)(P(d)) = P^(4>(d)) and ^(0(d)) = 

0^(^(d)). This combinational definition is equivalent to a 

topological definition (Walsh 1971). There is an orientation preserving 

isomorphism between two planar maps M and if and only if there is 

an orientation preserving homeomorphism ijj of the 2-sphere onto itself 

such that i|j(V(M)) = V(M^), ^(E(M)) = E(M^) and ^(F(M)) = F(M^).

Denote this by t|̂ (M) = and say that there is an orientation preserving 

homeomorphism between M and . A homeomorphism between two planar 

maps is defined similarly except that orientation may not be preserved.

A planar map M with a distinguished face f e F(M) is called a 

plane map M(f). Under a stereographic projection of M which takes 

f onto an unbounded region in the plane, a representation of M in 

the plane is obtained with face f corresponding to the external region.

An orientation preserving boundary homeomorphism of a plane map M(f)

^2^ onto another plane map M^(f^) is an orientation preserving homeomorphism

\p of the 2-sphere onto itself such that ^(M) = and ipif) = f^. A 

boundary homeomorphism between two plane maps is defined similarly 

except that orientation may not be preserved.

A plane map M(f) is rooted by distinguishing an e e B(f) together 

with a direction on e. If e is an isthmus the direction may be 

chosen in either sense and if e is not an isthmus then the direction 

is chosen in the sense of the orientation in f. An orientation



preserving boundary homeomorphism jJj of plane maps is a root homeomorphism 

of rooted plane maps if if; preserves the root edge and its direction.

If the negative end of root edge e e E(M) is vertex v e V(M) then 

denote a rooted plane map by M(f,e,v,) and call f and v the root face 

and root vertex respectively. A root homeomorphism of a rooted plane 

map onto itself maps each vertex, edge and face onto itself (Tutte 

1963) . Thus a rooted map has no symmetry.

For a class of planar maps a convenient combinatorial definition 

of equivalence may be given in place of the topological definitions 

above. A planar map M is non-singular if all edges and faces in

(22 B(v), V e V(M) are distinct. There is an orientation preserving

homeomorphism of non-singular planar maps M and if and only if there 

is a bijection 4> : C(M) C(M^) such that ^(V(M)) = V(M^), c{) (E (M) ) = 

E(M^), (|)(F(M)) = F(M^), (j) and (J) ^ preserve incidence and orientation. 

Denote this by (f)(M) = and call (f> an orientation preserving 

isomorphism of non-singular planar maps. Isomorphism which may not 

preserve orientation is defined similarly. Boundary and root 

isomorphisms are also defined for non-singular plane and rooted plane 

maps respectively.

2 3  Let (f> : M(f,e,v) M^(f^,e^,v^) be an orientation preserving

root isomorphism between non-singular rooted plane maps. The action 

of ^ on f, e and v determines completely (Brown 1963) .

A triangular map is a non-singular planar map in which each 

face is incident with exactly three distinct edges. Triangular maps 

are used to represent the incidences in planar maps, between vertices 

and edges, edges and faces, and faces and vertices. A derivable map 

M ’ (Tutte 1963) is a triangular map for which there is an ordered
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partition W(V), W(F) , W(E) of V(M') such that each e e E(M') has 

vertices in distinct classes and each vertex in W(E) is degree four.

A planar map M can be constructed from a derivable map M' by setting 

up a bijection between W(V), W(F), W(E) and the vertices, faces and 

edges of M which preserves ordering. The map M ’ represents the 

incidences in M and is called the derived map of M. If the
*construction of M has W(V) and W(F) interchanged then the map M dual 

to M is derived from M ’. There is an orientation preserving 

homeomorphism of two planar maps if and only if there is an orientation 

preserving isomorphism of the derived maps.

Let M(f,e,v) denote a rooted plane map. There are corresponding

rootings of M' . Let a e W(V) correspond to v, b £ W(E) correspond to

e and c e W(F) correspond to f. Distinguish the face in F(M') with

ordered vertices (a,b,c) by the orientation. If edge (a,b) is

distinguished, a (W(V), W(E)) rooting of M' .is defined. Similarly if

edges (b,c) or (c,a) are distinguished, (W(E), WCF)) and (W(F), W(V))

rootings, respectively, are defined (figure l.l(ii)). The
*(W(E), W(F)) rooting induces a rooting on the dual map M . There is a

1-1 correspondence between rooted plane maps under root homeomorphism

and each of the sets of (W(V), W(E)), (W(E), W(F)) and (W(F) , W(V))

rooted derivable maps. If (v,v^) are the endpoints of e in M and

a^ £ W(V) corresponds to v^ then (W(E), W(V)), (W(F), W(E)) and

(W(V), W(F)) rootings are defined by considering the face in F(M') with

ordered vertices (a^,c,b) by the orientation (figure 1.1 (iii)). The
*(W(F), W(E)) rooting induces a rooting on the dual map M . This 

induced rooting on the dual is used throughout the thesis (figure

1.1 (iv)).

Finally, in this section on the definition of planar maps, the
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notions of connectedness are introduced. A 1—vertex separator in 

a map M, not a single loop or single edge, is (v;f) v e v(M), f e F(M) 

such that i(v,f) > 2 .  If M has no 1-vertex separator then M is

2-vertex connected. Note that a planar map M,|e(M)| > 2 is non

singular if and only if M is 2-vertex connected and that the dual 
*

map M is 2-vertex connected if and only if M is 2-vertex connected.

A 2-vertex separator in a map M is (v^/Vg; vy/v £ V(M),

 ̂ such that i(f^,v^) = iffg/v^) = iff^/Vg) = = 1 .

Note that 1 and 2-vertex cuts in the underlying graph of a map M 

do not necessarily correspond to 1 and 2-vertex separators 

respectively. A 2-vertex separator induces a partition of E(M) 

into two non-empty sets E^, E^ called a 2-vertex separation. It 

is proper if [e^] ^ 2 i=l,2. If M is a 2-vertex connected map 

with no proper 2-vertex separation and has more than one edge then 

M is 3-vertex connected. The dual M is 3-vertex connected if 

an only if M is 3-vertex connected.

A 1-edge separator in a map M is (e;f) e £ E(M), f £ F(M) such 

that i(f,e) = 2 . M i s  2-edge connected if there is no 1-edge separator

Note that a 1-edge separator corresponds to an isthmus, which in turn

corresponds to a loop in the dual map. A loop in a 2-edge connected ' 

map corresponds to an isthmus in the dual map, thus duality does not 

preserve 2-edge connectedness. A 2-edge separator in a map M is

2 e^ £ E(M) and f^,f2 e F(M) such that i(f^,e^) =

~ i(f2 /e^) = = 1 .  If M is a 2-edge connected map

with no 2-edge separator then M is 3-edge connected.

A 1-vertex separator in a map M corresponds in the derived map 

M ’ to two distinct edges with common endpoints in W(V) and W(F) , that 

is a multiple edge. A 1-edge separator corresponds to a multiple
11



edge with endpoints in W(E) and W(F). A 1-edge separator in a map M

corresponds to a loop in M ̂ and, a 2-edge separator to a multiple edge 
*in M .

In the next chapter the planar maps are examined in more detail 

using a classification by vertex connectedness. The edges of a 

planar map represent the walls in an architectural plan and the 

vertices represent the incidence of walls. The vertex connectedness 

of a planar map gives a global property to this incidence relation 

between walls. The edge connectedness does not relate directly 

to the incidence between walls, although it might be used as an 

architecturally relevant means of classification. Note, however, 

that vertex and edge connectedness are related in the sense that a 

map is 2 or 3-edge connected if it is 2 or 3-vertex connected, 

respectively.

o
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FIGURE 1.1 Rootings of derived and dual maps
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CHAPTER 2 

PLANAR MAPS AND ARCHITECTURAL PLANS

2.1 Introduction

Planar maps comprise a representation of arrangements of lines 

or walls in architectural plans, in which edges represent walls and 

the vertices represent incidence or connection between walls. In 

an architectural plan the walls have many types. Perhaps they are 

movable partitions, internal walls, load bearing walls or external 

walls containing windows and doors. Represention by a planar map 

assumes that all walls are identical. However, if a plane map is used 

then the external walls are distinguished. A rooted plane map 

distinguishes a particular external wall as the "facade", say.

The faces in a planar map representing the arrangement of lines 

or walls correspond to regions in an architectural plan, and the edges 

correspond to boundaries of regions. The duals of planar maps 

represent the adjacencies among regions in a plan. The regions may 

also be of many types. Perhaps, some are subdivided according to a 

decomposition of activities, some are circulation spaces and others 

living areas. There may be external spaces and courtyards. 

Representation by a planar map assumes that all regions are the same 

type. However, if a plane map is used, one region is distinguished 

as external. A rooted plane map also distinguishes another region 

incident to the distinguished edge.

The derived map of a planar map represents region-wall, wall-vertex 

and region-vertex incidences. In fact the derived map may be seen 

as a convenient representation of all the incidences and adjacencies 

in an architectural plan. The purpose of this chapter is to examine

17
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classes of planar, plane and rooted plane maps which represent 

spatial arrangements in architectural plans.

2.2. Classification by connectedness

This section examines the classification of planar maps by 

connectedness, and the properties of the corresponding architectural 

plans.

A topological graph embedded in the oriented 2-sphere which is 

not necessarily connected and which may have isolated vertices is 

called a pseudo map. The faces of a pseudo map may be multiply 

connected. If a set of edges E ' c E(M) are removed from a pseudo map 

M the result is a pseudo map M - E'. If the isolated vertices are 

removed from M - E' the pseudo map M[E - E'] is obtained. A component 

of a pseudo map M is either an isolated vertex or M[E - E *], E ' £ E(M) , 

such that M[E - E*] is a map and there is no E" c e ' such that m Ce - E"] 

is a map. A pseudo map may be considered as the embedded "sum" of its 

components and a disconnected architectural plan is represented by 

the sum of its components.

A 1-vertex separator (v;f) in a planar map indicates that the 

corresponding architectural plan comprises two or more parts joined 

at a single vertex. A 1-vertex separator (v;f) in a plane map M(f) 

indicates an "external" joining and a 1-vertex separator (v;g), gzf 

indicates an "internal" joining of plans.

A 2-vertex separator (v,w; g,h) in a plane map M(f) represents a 

plan comprising two parts with an "external" joining at two vertices 

if f £ {g,h} and "internal" otherwise. A 2-edge separator (d,e; g,h) 

in a plane map M(f) represents a "through" room or corridor if

18
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f e {g/h} and if f ^ {g/h} the 2-edge separator represents a pair of 

doubly incident regions forming a ring.

In order to consider the 1,2 and 3-vertex connected rooted plane 

maps two addition operations are considered. First, 1-vertex 

extension and second, 1-edge extension.

2.2.1 Extensions

Let M(f,e,v) and M^(f^,e^,v^) denote two rooted plane maps 

(figure 2.1). Let w e V(M) be incident to g e F(M) and consider 

consecutive edges, b, d e B(w) at w. Add a loop c in g with vertex 

w, creating a new face h. Also add a loop c^ to in face f^, with 

vertex v^. Both c and c^ have directions defined by the orientations 

in g and f^, respectively. Identify w and v^, c and c^ together with 

their directions, and also identify the interiors of f^ and h. Finally 

remove c = c^ and merge the faces h^ and g. The new rooted plane map 

with distinguished face f, root edge e and root vertex v is a 1-vertex 

extension of M(f,e,v) by M^(f^,e^,v^) at w e V(M). This operation 

can be expressed in terms of the elements in the derived maps (Tutte 1963)

Let M(f,e,v) and M^(f^,e^,v^) be 2-vertex connected rooted plane 

maps (figure 2.2). Let c e E(M), c?=e and g,h e F(M) incident to c.

Let c be directed from w to u, w,u e V(M), by the orientation in g.

Let e^ be directed from v^ to w^. Split the edge c by an edge d in h 

to create a new face n. Also split e^ by an edge d^ in h^ with 

endpoints v^ and w^. Identify the exterior of n^ with the interior 

of n, u with v^, w with w^, c with e^ and d with d^. Finally 

remove c = e^ and d = d^, merging the face g with f^ and h with h^.

The new rooted plane map with distinguished face f, root-edge e and root- 

vertex v is the 1-edge extension of M(f,e,v) by M^(f^,e^,v^) at c e E(M) .

19



A particular case of 1-edge extension occurs when,

is the cycle map, that is with all vertices degree two. This 1—edge

extension subdivides an edge in M by inserting degree two vertices.

A 1-edge extension by an n-cycle, n>2, is equivalent to a sequence of 

n-2 1-edge extensions by 3-cycles.

Consider a 1—edge extension by a 3—cycle followed by a 1—vertex 

extension at the new vertex. This is called a 1-augmented 1-vertex 

extension (figure 2.3(i)). Now consider a 1-edge extension by a 

cycle followed by a 1-edge extension on one of the new edges. Two

cases are important.

^2^ A 1-edge extension by a 3-cycle, which subdivides an edge (u,w)

with vertex s, followed by a 1-edge extension on (u,s) or (s,w) is

called a 1-augmented 1-edge extension (figure 2.3(ii)).

(2) A 1-edge extension by a 4-cycle, which subdivides an edge (u,w) 

with vertices s^ and s^, followed by a 1-edge extension on is

called a 2-augmented 1-edge extension (figure 2.3 (iii)).

Note that the operations of 1-vertex and 1—edge extension are 

formulated as applying to rooted plane maps. They may be formulated 

for planar maps but any constructive application would require 

^  knowledge of the symmetry of the map used in the extension. This

information is provided implicitly by the set of rooted versions of 

a given planar map.

2.2.2. Construction and enumeration

A rooted plane map can be constructed by a sequence of 1-vertex 

extensions of a 2-vertex connected rooted plane map M where each 

extension is at a distinct vertex of M; there are |v(M) | "sites" for 

extension. Given a rooted plane map the 1-vertex extensions used to

20



construct it are uniquely determined. This result is used to relate 

the generating function for the number of 2-vertex connected rooted 

plane maps up to root homeomorphism with n edges and the generating 

function for the number of rooted plane maps with n edges. The A^ 

can be found by enumerating the (W(V),W(E)) rooted derivable maps 

(Tutte 1963) to be ^

and consequently the B^ are shown (Tutte 1963) to be

= 2(3n-3):
n nl(2n-l)l '

A 2-vertex connected rooted plane map, not a loop or single edge, 

can be constructed by a sequence of 1-edge extensions of a 3-vertex 

connected rooted plane map M at non-root edges of M. Consider the 

following classes of 2-vertex connected rooted plane maps.

(1) Those derived by 1-edge extensions from the 3-vertex connected 

rooted plane map in figure 2.4 (i)

(2) Those derived by 1-edge extensions from the 3-vertex connected 

rooted plane map in figure 2.4(ii)

(3) Those derived by 1-edge extensions from a 3-vertex connected map 

with more than three edges.o
These three classes of 2-vertex connected rooted plane maps are 

mutually disjoint. The generating functions for the maps in classes 

(1) and (2) are given in terms of the generating function for B^.

Given a 2-vertex connected rooted plane map in class (3) the 1-edge 

extensions used to construct it are uniquely determined. The gener

ating function for the maps in class (3) may thus be expressed in terms 

of the generating functions for B^ and C^, the number of 3-vertex
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connected rooted plane maps with n edges. The generating functions

for B and C are thus related and the C can be calculated (Tutten n n
1963). Table 2.1 and figure 2.5 give the 1, 2 and 3-vertex connected 

rooted plane maps for small numbers of edges.

The absence of loops or isthmuses provides a further classification 

of planar maps. A rooted plane map without loops can be constructed 

from a' 2-vertex connected rooted plane map without loops by a sequence 

of 1-vertex extensions using rooted plane maps without loops, at 

distinct vertices of the original map. A relation between the 

generating functions for loopless rooted plane maps and 2-vertex 

connected rooted plane maps can thus be established. Since the latter 

is known the former may be derived. Similar considerations apply to 

the isthmusless and isthmusless, loopless rooted plane maps.

Consider the general application of 1-vertex extension and 1-edge 

extension for the construction of rooted plane maps. Any rooted plane 

map can be constructed by a sequence of 1-vertex extensions, using 2- 

vertex connected rooted plane maps, from a 2-vertex connected rooted 

plane map. Note that the loop map and the edge map are 2-vertex 

connected. If the loop (edge) map is not used in 1-vertex extensions 

using 2-vertex connected rooted plane maps then loopless (isthmusless) 

maps are constructed. If neither loop nor edge maps are used then 

loopless, isthmusless maps are constructed. Any 2-vertex connected 

rooted plane map, not a loop or single edge can be constructed from a 

3-vertex connected rooted plane map by a sequence of 1-edge extensions 

by 3-vertex connected rooted plane maps. Note that a 3-cycle is 

3-vertex connected and thus edges may be subdivided.

The enumerations for the 1, 2 and 3-vertex connected rooted plane maps
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suggest that the full set of planar maps is too large, even with a 

small number of edges, to be useful in itself. It is perhaps more 

conveniently considered as derived from the 2-vertex connected planar 

maps by 1-vertex extensions, which in turn are considered as derived 

from the 3-vertex connected planar maps by 1-edge extension. The 

3-vertex connected planar maps represent a basic set of possibilities 

for the incidence patterns of walls in architectural plans in the sense 

that the incidence patterns may be constructed from these basic units.

2.2.3 2-vertex connected planar maps

The 2-vertex connected planar maps are now examined in more detail. 

Further classification is considered together with the sets of plane 

maps up to orientation preserving boundary homeomorphisms.

The 2-vertex connected rooted plane maps can be classified according 

to the total number of edges and the number of edges in the boundary 

of the distinguished face (Brown 1963) (table 2.2 and figure 2.6).

The corresponding 2-vertex connected plane maps up to orientation 

preserving homeomorphisms have also been examined (table 2.3) together 

with the types of rotational symmetry encountered in these maps. The 

corresponding architectural plans are classified according to the 

number of external walls, internal walls and their "potential" 

rotational symmetry.

The 2-vertex connected rooted plane maps can also be classified 

according to both the number of edges, faces, and edges in the boundary 

of the distinguished face. Brown and Tutte (1964) give a generating 

function equation for the numbers of such maps and solve it to give 

the number of 2-vertex connected rooted plane maps with n edges and
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m faces as

(2n-m-3)!. (n+m-3)I
(n-m-1)I (m-1)I (2n-2m-3)I (2m-3)I (3)

2.2.4 3-vertex connected planar maps

There are well established results for the generation of 3-vertex 

connected planar maps. The first is due to Tutte (1961) and states 

that a 3-vertex connected planar map, whose underlying graph is not 

a wheel can be constructed from a 3-vertex connected planar map M 

with fewer edges by one of the following operations (figure 2.7):

(1) Splitting a vertex of M incident with four or more edges and 

adding a new edge incident with the resulting new vertices.

22) (2) Joining two vertices in the boundary of a face, not already joined

by an edge, with an edge lying entirely inside the face.

Both operations add an edge, the first preserves the number of faces, 

whilst the second increases the number of faces by one.

The second result states that a 3-vertex connected planar map 

may be constructed from the tetrahedron map with six edges by a 

sequence of the following operations (figure 2.8):

(1) Joining two vertices in the boundary of a face, not already 

joined by an edge, with an edge lying entirely inside the face.

22) (2) Subdividing an edge with a vertex and using (1) with the new

vertex.

(3) Subdividing two edges in the boundary of a face and using (1) 

with both new vertices.

The classification of 3-vertex connected rooted plane maps 

according to the number of edges and faces has been investigated 

(Mullin and Schellenberg 1968). The number of 3-vertex connected 

rooted plane maps with n edges and m faces is obtained (table 2.4 and
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and figure 2.9).

The 3-vertex connected planar maps are often referred to as 

polyhedra or 3-polytopes on account of Steinitz's Theorem (Grünbaum 

1967) on the realizability of planar maps as 3-polytopes. The number 

of distinct polyhedra up to homeomorphism (enantiomorphs are not 

distinguished) with n edges and m faces has been found by construction 

for m < 8. (Table 2.5 and figure 2.9.) A catalogue of the dual 

planar maps with up to eight vertices is given in Britton and Dunitz 

(1973).

The 3-vertex connected planar maps form the basic set of possibil- 

(2D ities for the spatial arrangement of walls in an architectural plan.

However, as noted previously it is often convenient to use the set 

of rooted versions when manipulating and combining these incidence 

patterns.

2.2.5 Dual planar maps

If a planar map represents the spatial arrangement of lines or 

walls in an architectural plan then the dual planar map corresponds 

to the spatial arrangement of regions under the adjacency relation.

These planar maps are classified by connectedness in exactly the same 

way as for planar maps representing lines or walls. Note that a

1-vertex extension of a rooted plane map corresponds to a 1-vertex 

extension of the dual rooted plane map and similarly for 1-edge extension 

Further classification will be in terms of the numbers of vertices 

and edges rather than faces and edges, since the vertices now represent 

regions in architectural plans.

Some simple relationships between planar maps and their duals are 

mentioned, in addition to the preservation of connectedness referred
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to in section 1.3. A loop in a planar map M corresponds to an
*

isthmus in the dual M , and an isthmus in M corresponds to a loop in
* *M . A degree two vertex in M corresponds to a digon face in M

and a 2-edge cut in M corresponds to a pair of edges with common

endpoints.

2.3 The access relation

The access relation between regions in an architectural plan often 

generates a plane tree that is, a planar map with exactly one face, in 

which vertices represent regions and edges the access between regions. 

The plane trees can be rooted by distinguishing the vertex corresponding 

to the external space as root vertex. If the root vertex is degree 

one then there is internal access between any pair of interior regions 

and if the root vertex is degree greater than one then it is necessary 

to "go outside" in order to gain access between parts of the plan.

2.3.1 Tree rooted plane maps

Suppose that M is a rooted plane map with n edges and m vertices.

Let T be a distinguished spanning tree of M. Then M together with the

distinguished spanning tree forms a tree-rooted map M(T). The cotree

of T in M(T) has n - ra + 1 edges. Subdivide each edge of this

cotree by two special vertices and remove the edges between the special

vertices. A tree is obtained with 2 (n - m + 1) special vertices all

degree one, and is rooted by a suitable convention. The rooted plane

map M can be described by this rooted plane tree and the spanning tree 
*

of M corresponding to the cotree of T in M, again suitably rooted 

(Mullin 1966). Thus tree rooted maps are conveniently described by 

pairs of rooted plane trees. A tree-rooted map represents the region 

adjacencies in an architectural plan together with a specification of
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which adjacencies are realized by physical access.

2.3.2 Enumeration of rooted plane trees

A plane tree is a planar map with precisely one face and a plane 

tree is rooted by distinguishing a vertex. A general enumerative 

result for rooted plane trees is that the number of rooted plane trees 

with n edges, v(i) non-root vertices of degree i, and root vertex degree 

k is (Mullin, 1966)

' (4)

n  v(i)I 
i=l

CO CO

if n = 2 v(i) and 2n = ^ i v, + k and zero otherwise.
1=1 1=1 ^

The number of rooted plane trees with i ordinary non-root vertices 

and 2j special non-root vertices of degree one, is given by Mullin 

(1966) as

( 2.1+2 j) :

i:(i+l)!2j: (5)

As a special case the number of rooted plane trees with i+1 vertices is

,r'\ 2ii
iI(i+D! * (G)

Since, tree-rooted plane maps are described by pairs of rooted plane 

trees, they may be enumerated. Also, since rooted plane trees with a 

given vertex partition are enumerated, the tree rooted plane maps with 

n edges, m vertices and v(i) non-root vertices of degree i and root 

vertex of degree k, can be enumerated (Mullin, 1966) in the following 

way.
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The number of rooted plane trees with v(i) non-root vertices, 

i ^ 2, v(l) + 2j non-root vertices degree one, and root vertex degree 

k is given by formula (4) as

k ( I v(i) + 2j - 1) :
n(l,j,k) =  — ------—  —  (7)

(v(l) + 2j) 1 Jj- v(i) : 
i=2

if 'I (i-2) v(i) = 2j - k and zero otherwise. 
i=l

Thus the number of rooted plane trees with v(i) ordinary non-root vertices 

degree i > 1, 2j special non-root vertex degree one and root-vertex 

degree k is

'v(l) + 2i\ k ( I v,i, + 2i _ 1, !
2i n (i,j,k) ° ^ „---------------  (8)
 ̂ / (2j)J JJ v(i)! 

i=l

if 5] (i-2) v(i) = 2j - k and zero otherwise.
i=l

2.3.3 Enumeration of tree rooted plane maps

A tree rooted map M(T) with n edges and m vertices is described by
*a pair of rooted plane trees. First, the spanning tree in M corres

ponding to the cotree of T in M(T). This rooted plane tree has 

n - m + 1 edges. Second, the tree obtained from T by "adding" special 

vertices. This rooted plane tree has 2 (n - m + 1) special vertices. 

Thus the number of tree . rooted maps with n edges, m vertices, v(i) 

non-root vertices degree i > 1, and root vertex degree k is given by 

formulae (6) and (8)

k ( ^ v(i) + 2 (n - m + 1) - 1)1 
(2 (n - m + 1) ) i_____________________ i=l_____________________________
(n - m + 1) I (n - m + 2) ! (2(n - m + 1) ) .' JJ (v(i) I)

i=l
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= k (2n - m) :-------------:_________________  ,9)
(n - m +.2)1 (n - m + 1) ! -jj (v(i) l)

i=l

if (i - 2) v(i) = 2(n - m + 1) - k and zero otherwise.
i=l

2.4 Outerplane maps

An outerplanar map has a face which shares a boundary edge with 

every other face. An outerplane map is a plane map with distinguished 

face adjacent to every other face. A rooted outerplane map is a rooted 

plane map with distinguished face adjacent to every other face. A map 

with one face or a plane tree is outerplanar.

2.4.1 Construction of outerplane maps

A rooted outerplane map may be constructed from a 2-vertex connected 

rooted outerplane map by a sequence of 1-vertex extensions by rooted 

outerplane maps at distinct vertices in the original map. The 1-vertex 

extensions by plane trees may occur at any vertex and in any face. 

However, 1-vertex extensions by rooted outerplane maps which are not 

plane trees must occur at a vertex in the boundary of the distinguished 

face and must lie in the distinguished face.

Analogous to the general case of rooted plane maps, a rooted" 

outerplane map may be constructed from a 2-vertex connected rooted 

outerplane map by a sequence of 1-vertex extensions by 2-vertex connected 

rooted outerplane maps such that each extension which is not an edge 

map lies in the distinguished face of the previous rooted outerplane 

map.

A 2-vertex connected rooted outerplane map may be constructed from 

a 3-vertex connected rooted outerplane map by a sequence 1 or 2-augmented
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1-edge extensions by 2-vertex connected rooted outerplane maps at 

distinct edges of the original map such that f = g in figure 2.2.

The sequence of 1 and 2-augmented 1-edge extensions is not unique 

for the construction of a given 2-vertex connected rooted outerplane 

map whereas the use of ordinary 1-edge extensions would give a unique 

sequence. However, by using 1 or 2-augmented 1-edge extensions it is 

easier to ensure that outerplanarity is preserved.

Consider the general application of 1 and 2-augmented 1-edge 

extensions in the construction of 2-vertex connected rooted outerplane 

maps. A 2-vertex connected rooted outerplane map may be constructed 

22) from a 3-vertex connected rooted outerplane map by a sequence of 1 and

2-augmented 1-edge extensions by 3-vertex connected rooted outerplane 

maps such that f = g in figure 2.2.

The outerplane maps are particularly relevant in the architectural 

context since it is often required to give all (or at least most) of 

the internal spaces an external aspect, perhaps for daylighting or 

external access (Lynes 1977).

o
2.4.2 Weak dual plane map

The weak dual plane map of a plane map M(f) is the map obtained
*  * * from M by deleting the vertex v e V(M ) corresponding to f and its

*
incident edges. The union of v , its incident edges and incident faces 

in M(f), is the distinguished face of the weak dual plane map. The 

weak duals represent the adjacencies among the internal regions in an 

architectural plan. The weak dual plane maps of an outerplane map, 

has all its vertices in the boundary of the distinguished face. Every 

such map is the weak dual plane map of an outerplane map. Generally 

it will be the weak dual of many outerplane maps.
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A plane map M(f) in which the boundary of f, B(f), is a simple

closed curve and each vertex in V(M) lies in B(f), is a general

dissection of a polygon. Dissections of a polygon are 'tree-like'

plane maps in the following sense. Let D be a rooted dissection of 
*

a polygon and D its corresponding rooted dual plane map. Suppose 
* *

V € V(D ) corresponds to the distinguished face in D. Subdivide
*each edge incident to v with vertices v^, ..., v^ where v^ lies on the

* *root edge of M . Remove the segments (v^,v ) i = 1, ... k and the
*vertex v . The result, with v^ as the root vertex, is a planted plane 

tree, that is, a rooted plane tree in which the root vertex is degree 

one.

The number of rooted dissections of a polygon, in which the exterior 

face has degree m and there are v(i) internal faces of degree i is given, 

on using the formula for rooted plane trees with a given partition, by

'm + v(l) - l\ (m + 'l v(i) - 1)1 (m + ^ v(i) - 1) 1
  ----=---- izl--------

/ 00 CO

v(l) / (m + v(l) -1)1 ÎT (v(i))l (m - 1)1 TT (v(i))
i=2 i=l

(10)

if ( i - 2 )  v(i) = m - 2 and zero otherwise.

(222 The general dissections of a polygon might possess loops, giving

internal faces of degree one. A dissection of a polygon (not the loop 

map) is 2-vertex connected if and only if it has no loops. A 2-vertex 

connected dissection of a polygon may have internal faces of degree 

two. The 2-vertex connected dissections of a polygon in which each 

face has degree greater than two have been extensively investigated 

(Read 1978, Harary Palmer and Read 1975). These dissections are 

precisely the weak dual plane maps of the 3-vertex connected outerplane 

maps.
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The weak dual plane maps of outerplane maps may be constructed 

from an edge map or a 2-vertex connected dissection of a polygon by 

a sequence of 1-vertex extensions by edge maps and 2-vertex connected 

dissections such that each 1-vertex extension which is not a loop 

lies in the distinguished face of the previous map.

2.5 Conclusion

The representation of architectural plans by planar and plane 

maps has been the subject of previous investigations, which have 

generally concentrated on the arrangement of regions. The first 

approaches used a graph in which vertices represented regions and 

edges, the required adjacencies between regions (Levin 1964, Cousin 

1970/ Steadman 1975). The possible embeddings of the adjacency 

graphs were examined, although not in great detail. This 

shortcoming was rectified by Grason (1970) who used a "planar graph 

grammar" to construct possible embeddings and to supplement, in a 

general way, a set of required adjacencies. However, in the 

examples considered by Grason, the adjacency graph or map was 

required to satisfy at all stages of construction, certain "well- 

formedness" conditions corresponding to the realization of the 

adjacency graph in an architectural plan with rectangular boundary 

and all regions rectangular. These plans and their adjacency 

graphs are investigated in section 3.4. In this chapter the set 

of possible incidence structures among walls and regions in 

architectural plans which a "planar graph grammar" can generate, 

have been examined.

The treatment differs fundamentally from the previous 

approaches not only in the fact that sets of possible incidence
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structures are examined, but also in that architectural plans are 

considered, in the first instance, to be spatial arrangements of 

walls. The incidence structures of the walls are represented by 

planar or plane maps. The spatial arrangements of regions are 

considered to be derived. Given an incidence structure of walls 

the regions can be considered as the faces in the corresponding 

planar or plane map, as indicated in this chapter. However, if 

the walls have further properties, such as doors, windows or 

moveable partitions then the architecturally relevant regions might 

well require a different interpretation.

The development of this chapter is now placed in the context 

of the scheme given in section 1.1. This serves as a conclusion 

to the chapter and an introduction to the next. Section 2.1 

identifies the kinds of elements and the ways of representing the 

relationships between the elements. Section 2.2 provides the 

means of constructing representations of the spatial arrangements 

corresponding to architectural plans with different degrees of 

connectedness. In this section, some descriptions of the 

representations are given together with enumeration results.

The 3-vertex connected planar maps are considered as a basic 

set for representing the incidence structures in architectural 

plans. Specifying a distinguished face and rooting an edge may 

be considered as ornamentations. The addition or extension 

operations allow further rooted plane maps to be constructed from 

the "components" in the basic set.

The relative disposition of an original map and a map used

33



o

to extend it are crucial in considering an addition of maps.

The rooting of maps, since it 'destroys' symmetry, allows not 

only a specification of where to apply the extension (relative 

to the root in the original map), but also how to apply it 

(relative to the root in the extension map). The extension 

operations can be considered as ornamentations in which two 

incidence structures are combined.

In section 2.3 the region adjacency structure of an architectural 

plan is ornamented by adding the access relation to the properties 

under consideration in the representation. The specification of 

an access structure is considered as an ornamentation which 

transforms the region adjacency structure by specifying additional 

properties of the relations, (adjacencies) between elements 

(regions). The addition of an access structure can also be 

considered as an ornamentation of the incidence structure of walls. 

Additional properties of elements (walls) are specified whilst 

the relations between the elements remain unchanged. This 

emphasises the fact that walls are considered as elements in the 

wall incidence structures and as relations in the region adjacency

^ true tures.

The particular case in which the access structure is a tree is 

investigated briefly. Further work in this area might include 

an examination of distance measures on these spanning trees. The 

mean distance and depth of the trees could be relevant properties 

in the architectural context. Other types of access structure 

could also be examined; for instance, those which consist of a 

single cycle with short spurs (Doyle and Graver 1976). Notions
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of connectedness could be developed for access structures in 

architectural plans. The relation between access structures and 

the incidence structures of walls and regions which accommodate 

them, could offer fruitful ground for investigation.

In section 2.4 a particular subclass of planar maps, namely 

the outerplane maps, is considered for attention in the architectural 

context. Characterizing properties and means of construction and 

ornamentation are established. Further work might investigate 

those planar maps in which the regions are all adjacent tora 

small subset of regions. This subset of regions might correspond 

to the major spaces in a plan, such as halls, corridors, the 

external spaces and courtyards.

The scheme of investigation set out in section 1.1 has been 

demonstrated in many respects. However, there has been limited 

attention to the classes of incidence structure of architectural 

relevance. The next chapter considers such classes and appropriate 

ornamentation operations. It concludes with an extensive 

discussion of the ornamentation of a certain class of planar maps 

which provides architectural plans with rectangular regions.
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FIGURE 2.1 1-vertex extension
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FIGURE 2.2 1-edge extension
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FIGURE 2.3 Augmented extensions
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FIGURE 2.4 3-vertex connected rooted plane maps with three 
edges
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FIGURE 2.5 Rooted plane maps with few edges: (i) n < 3 edges,
(ii) 2-vertex connected, n < 5, (iii) 3-vertex connected, 
n < 6. A number on an edge denotes the number of rooted 
versions with that edge as root edge.
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FIGURE 2.5 2-vertex connected rooted plane maps with n < 6 
edges and m < 6 edges in the boundary of the distinguished 
face. A number on an edge in the boundary of the distinguished 
face denotes the number of rooted versions with that edge as 
root edge.

42



m 2 5/5

O

. o

FIGURE 2.6
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FIGURE 2.7 Operations to construct 3-vertex connected planar 
maps from wheels.
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FIGURE 2.8 Operations to construct 3-vertex connected planar 
maps from the tetrahedron map.
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FIGURE 2.9 3-vertex connected planar maps with m :< 7 faces 
and n < 15 edges. A number on an edge denotes the number 
of rooted versions with that edge as root edge.
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n/°̂ 2 3 4 5 6

2 1

3 1 1

4 2 3 1

5 5 9 6 1

6 22 32 26 10 1

TABLE 
n ^ 6

2.2
edges

2-vertex connected 
and m ^ 6 edges in

rooted plane maps with 
the boundary of the

distinguished face.

n r

2

3

4 2 1 1

1

1 1

2 1

4 3

14 12

5 4 3 2 1

6 14 12 8 2

TABLE 2.3 2-vertex connected plane maps up to orientation- 
preserving boundary homeomorphisms with n < 6 edges and 
m < 6 edges in the boundary of the distinguished face.
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CHAPTER 3 

TRIVALENT MAPS AND ORNAMENTATION

3.1 Trivalent maps

In the last chapter the classification of possible architectural 

plans by the connectedness of their corresponding planar maps was 

considered. The 3-vertex connected planar maps were a basic set in 

the sense that other planar maps are constructed from them by adding 

other maps using 1-vertex or 1-edge extension. This analysis 

presented the general structure of the space of planar maps, which 

provides all possibilities for the spatial arrangements in architec

tural plans. In this chapter a. particular class of plans is examined. 

This class provides both a basic set from which other plans can be 

constructed by various operations, and a relevant set in that the 

elements, with perhaps slight modification, correspond to spatial 

arrangements which commonly occur in architectural plans.

The walls in an architectural plan are most often incident in 

groups of two, three and four. Suppose that four mutually incident 

walls are considered as a limiting case of two groups of three 

incident walls. Consider the corresponding planar maps which have 

vertices of degree one, two and three. These planar maps are 

derived from those maps with vertices of degree one and three by 

edge subdivisions. In turn these are derived"^frora maps with vertices 

of degree three by 1-augmented 1-vertex extensions by single edges. 

Planar maps with all vertices of degree three are called trivalent 

planar maps.

3.1.1 Classification by connectedness

The most general trivalent planar maps have loops and isthmuses.
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Consider the rooted plane maps with all vertices degree three except 

the root vertex which is degree one. Let these maps be called
; v:,-.

near trivalent rooted plane maps (figure 3.1) . There are two trivalent 

maps with three edges (and none with fewer edges) (figure 3.2) and 

let the one with loops be called the dumbell map.

Note that loops in a trivalent map can only occur in conjunction 

with isthmuses. Also note that (v;f) is a 1-vertex separator in a 

trivalent planar map if and only if there is a 1-edge separator 

(e;f) such that v is an endpoint of e. In addition (v /Vg: 

is a 2-vertex separator in a trivalent planar map if and only if 

there is a 2-edge separator ^1 '^2  ̂ such that v^ and v^ are

endpoints of e^ and e„ respectively. Thus for trivalent planar 

maps 2 and 3-vertex connectedness are equivalent to 2 and 3-edge 

connectedness respectively; vertex and edge connectedness are not 

distinguished.

Any trivalent rooted plane map can be constructed from a 

2-connected trivalent rooted plane map or a rooted dumbell map by 

a sequence of 1-augmented 1-vertex extensions by near trivalent 

rooted plane maps.

On account of the construction of general trivalent planar 

maps attention is restricted to 2 and 3-conn^qted trivalent planar 

maps. A 2-connected trivalent rooted plane map can be constructed 

from a 3-connected trivalent rooted plane map by a unique sequence 

of 2-augmented 1-edge extensions at distinct non-root edges of the 

original map. Note that trivalency avoids the difficulties of 

unique construction encountered for general 2-vertex connected rooted 

plane maps. This result gives a relation between the generating
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functions for the numbers of 2 and 3-connected trivalent rooted 

plane maps, respectively, with n faces. Consider the general 

application of 2-augmented 1-edge extension. A 2-connected 

trivalent rooted plane map can be constructed by a sequence of

2-augmented 1-edge extensions from a 3-connected trivalent rooted 

plane map using 3-connected trivalent rooted plane maps.

The dual rooted plane maps corresponding to the 3-connected 

trivalentrooted plane maps have each face bounded by three distinct 

edges and have no multiple edges. They are rooted triangulations. 

The number of rooted triangulations with n > 3 vertices, that is, 

the number of 3-connected trivalent rooted plane maps with n > 3 

faces is given (Tutte 1962a; Brown 1964) (table 3.1) as

2 (4n - 11) : . ,1,
(n - 2) I (3n - 1):

The 3-connected trivalent planar maps up to homeomorphism 

have been enumerated up to twelve faces by Grace (1965) . Bowen and 

Fisk (1967) enumerate the corresponding triangulations up to 

homeomorphism (table 3.2).

The number of 2-connected trivalent rooted plane maps with 

n > 3 faces is derived (Tutte 1962b) (table 3.3) as

n-2 "
2 1 . (2,
(n - 3)1 (2n - 2)I

The duals of the 2-vertex connected trivalent maps are triangular maps 

in which each face is bounded by three distinct edges, but there may 

be multiple edges.
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3.1.2 Further classification

Consider the general application of 2-augmented 1-edge extension.
;

A 2-connected trivalent rooted plane map can be constructed by a 

sequence of 2-augmented 1-edge extensions from a 3-connected trivalent 

rooted plane map using 3-connected trivalent rooted plane maps.

Each 2-augmented 1-edge extension creates a corresponding multiple 

edge in the dual rooted plane map. Consider the two classes of

2-connected trivalent rooted plane maps formed when each 2-augmented

1-edge extension occurs at an edge.

(1) in the boundary of the distinguished face of the previous map,

and

(2) not in the boundary of the distinguished face of the previous 

map.

In order to consider these two classes the weak dual rooted

plane map of a 2-connected rooted trivalent plane map M is defined.
* * *Consider the map M - v , where vertex v corresponds to the

* *distinguished face in M, obtained from M by deleting v and its

incident edges and distinguishing the new face formed by the union 
*

of V and its incident edges and faces. The edge in the distinguished
* * * *face of M , not incident to v is the root edge of M - v with

direction given by the orientation of the distinguished face in M*.

This rooted plane map is the weak dual rooted^plane map of M
*

(figure 3.3) and it characterises M and thus M completely.

The weak dual rooted plane map of a 3-connected trivalent 

rooted plane map M is a rooted triangulation of a polygon if M has 

more than three faces, and a single edge if M has three faces. If 

there are s > 3 external vertices in the boundary of the distinguished 

face and r internal vertices it is called a rooted [r,s] triangulation.
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The weak dual rooted plane map of a 2-connected trivalent rooted 

plane map in class (2) is called a rooted [r,s] triangular map 

if there are s > 2 external vertices in the boundary of the 

distinguished face and r internal vertices. The weak dual of a

2-connected trivalent rooted plane map of class (1) can be 

constructed from a rooted [r,s] triangulation or single edge, by

1-vertex extensions using single edges or rooted [r,s] triangulations 

which lie in the distinguished face of the previous map.

The weak dual rooted plane map of a general 2-connected trivalent 

rooted plane map can be constructed from a rooted [r,s] triangular 

map or single edge by a sequence of 1-vertex extensions by single 

edges or rooted [r,s] triangular maps which lie in the distinguished 

face of the previous map.

The [r,s] triangulations represent architectural plans with s 

regions having an external aspect and r internal regions. There 

are no "through" rooms or corridors and no two regions which together 

with their mutually adjacent walls form a multiply connected region, 

that is, form a "ring".

The [r,s] triangular maps represent architectural plans with s 

regions having an external aspect and r internal regions. There 

are no "through" rooms or corridors by virtue of the conditions 

imposed on the maps of class (2). However, there may be two regions 

which form a "ring".

The 2-connected trivalent maps of class (1) represent the 

architectural plans with no two regions which form a "ring".

However, there may be "through" rooms or corridors. The 1-vertex
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separators in the weak dual map represent the corridors. These

may have many adjacencies to the external region.
;'4"

3.1.3 Enumeration

The number of rooted [r,s] triangular maps, r > o, s > 3, is 

given by Mullin (1965) as

r+12 (2s - 3) I (3r + 2s - 4)1 ,
(s - 2):2 rl (2r + 2s - 2):

The number of rooted [r,2], r > 1, triangular maps is the same as the 

number of rooted [r - 1, 3] triangular maps. , The number of rooted 

[r,s] triangulations is r > O, s > 3, is given by Brown (1964)

(table 3.4 and figure 3.4) as

2(2s - 3) I (4r + 2s - 5):___________  . (4)
(s - 1)1 (s - 3) 1 rl (3r + 2s - 3) I

The numbers of [r,s] triangulations up to orientation preserving 

boundary homeomorphisms are provided by the results in Brown (1964) 

(table 3.5). The numbers, up to boundary homeomorphisms can also 

be derived (table 3.6 and figure 3.5) together with the numbers of 

[r,s] triangulations which possess a reflection symmetry (table 3.7 

and figure 3.6). Note that for relatively large numbers of regions 

only a small proportion of the architectural plans corresponding to

3-connected trivalent plane maps have 'potential* reflection symmetry. 

This gives some indication of the restriction on possible arrange

ments imposed if an axis of symmetry is required. For small numbers 

of regions the restriction is not great.

3.1.4 Simple and strong triangulations

A diagonal in an [r,s] triangulation is an edge not lying in
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the boundary of the distinguished face, but whose endpoints both 

lie in the boundary of the distinguished face. An [r,s] triangul- 

ation without diagonals is strong (Tutte 1962a). The corresponding 

trivalent plane maps have no three mutually adjacent faces (one of 

which is the distinguished face) whose union together with mutually 

incident edges and vertices form a multiply connected region. The 

corresponding architectural plans have no two regions whose union 

constitutes a "through" space across the plan.

An [r,s] triangualation is simple if every 3-cycle bounds a single 

face. The trivalent plane maps which correspond to simple [r,s] 

triangulations, s > 4, have no three mutually adjacent faces (none 

of which is the distinguished face) whose union together with 

mutually incident edges and vertices form a multiply connected 

region. The simple and strong, simple triangulations are particularly 

important in the examination of architectural plans in which regions 

have rectangular boundary (section 3.4). The simple [r,s] 

triangulations have been investigated by Mullin (1965) who gives 

an enumeration formula for rooted simple Cr,s], s > 4 , triangulations 

(table 3.8 and figure 3.7) as

(2s - 4) I (3r + s - 4) I____________  . (5)
r: (s - 4) ! (s - 1) I (2n + s - 2) :

3.2 The construction of 2 and 3-connected trivalent maps

3.2.1 2-connected trivalent maps

If M is a 2-connected trivalent planar map with n + 1 faces 

then M can be constructed from a 2-connected trivalent planar map 

with n > 4 faces by the operation a (figure 3.8) or "face splitting", 

which adds an edge across the interior of a face. This result
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follows immediately from the fact that for each 2-vertex connected 

graph, not a cycle, there is an edge or suspended chain whose 

removal yields another 2-vertex connected graph (Whitney 1932) .

If M is a 3-connected trivalent planar map with n + 1 faces then 

M can be constructed from a 3-connected trivalent planar map with 

n > 4 faces by face splitting.

There are slightly more restricted operations which can be used 

to generate the trivalent planar maps. A 2-connected trivalent 

planar map with f(k) faces of degree k has

I (6 - k) f(k) = 12 . (6)

The formula yields the inequality:

4f(2) + 3 f(3) + 2f(4) + f(5) > 12 . (7)

Thus a trivalent planar map has a face of degree less than six.

Moreover, a trivalent plane map has an "internal" face; that is a 

face not the distinguished face, of degree less than six.

Consider the operations shown in figure 3.9. The operations

^i create faces of degree i and are particular cases of the operations

a. A 2-connected trivalent planar map with n + 1 faces can be

constructed from a 2-connected trivalent planar map with n > 4 faces 

by or . Further, a 2-connected trivalent plane map with

n + 1 faces can be constructed from one with n faces by “2 "“3'“4 ^5 '

Such that the new edge does not lie in the boundary of the distinguished 

face.

3.2.2 3-connected trivalent maps

A 3-connected trivalent planar map with n + 1 faces can be
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constructed from a 3-connected trivalent planar map with n > 4 

faces by a^,a^, or a^. Further, a 3-connected trivalent plane map
" SV-

with n + 1 faces can be constructed from one with n > 4 faces by 

3̂ '^4 ' ^5 that the new edge does not lie in the boundary

of the distinguished face. The generation of triangular maps and 

triangulations can be accomplished by using operations g . dual to 

â ., i = 2 ,3,4,5 (figure 3 .10).

The weak duals of the 3-connected trivalent plane maps are the 

Cr,s3 triangulations. Each triangulation corresponds to a unique

3-connected trivalent plane map. The rule6 and g may be

augmented to construct [r,s] triangulations. Consider the operations

~ •••/■ 6 , shown in figure 3,11 where edges marked "p" are

in the boundary polygon.

An [r,s3 triangulation T , r > l ,  s > 4  can be constructedi , s
from an [r - 1 , s] triangulation by 3^/3^ 3^/ or an [r, s - 1]

triangulation by y 2'"̂ 3 * *̂ r s internal vertex degree

three, four or five, then operations 32,3^,3g can be used. Otherwise

\ , s  external vertex v degree two, three or four. If d(v) = 2

then use if d(v) = 3 (figure 3.12(ii)) and there is no edge

(a,c) , then use If there is an edge (a,c) then b is an internal

vertex and, use y^. If d(v) = 4, then at most one of the pairs

of vertices {a,c} and {b,d} are joined by an edge. If there is 

no edge (a,d), then use y^ and if there is an edge (a,d) theninse y 

since b and c are both internal vertices.

An [r,3] triangulation, r > 1 can be constructed from an 

Cr - 1, 3] triangulation by since it has an internal vertex

degree three, four or five.
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A strong [r,s]'triangulation, r > 1, s > 4 can be

constructed from an [r - 1, s] strong triangulation by

or an [r, s - 1] strong triangulation by Suppose ^irst

that T has an internal vertex v of degree three, four or five r,s
(figure 3,12(i)). If d(v) = 3 then is used. If d(v) = 4, 

then at most one of the pairs ofvertices{a,c} and {b,d} are joined 

by an edge. If there is an edge (a,c) , then either b or d is an 

internal vertex and 3^ can be used. If neither is joined by an 

edge, then 3^ can be used except when a,b,c,d are external vertices. 

Then r = 1, s = 4 and T^ ^ can be constructed using ' If d(v) = 5, 

then at most two of the pairs of vertices{a,c}, {a,d}, {b,e}, {b,d}, • 

{c, e} are joined by an edge. If there are one or two edges, then 

at least one of a,b,c,d,e is an internal vertex and 3_ can be used.
D

If there are no such edges, then 3^ can be applied unless a,b,c,d,e 

are all external vertices, in which case y^ is used to construct 

Tr,s

If T has no internal vertex of degree three, four or five, r,s
then it has an external vertex v of degree three or four (figure

3.12(ii)). If d(v) = 3 then there is no edge (a,c) since s ^ 4,

thus y is used. If d(v) = 4 ,  then there is no edge (a,d) and at

most one of the pairs of vertices {a,c} and {b,d} are joined by an

edge. Thus y_, is used to construct T3 r,s

A strong [r,3] triangulation, r > 1 can be constructed from 

an [r - 1, 3] strong triangulation by 3h,3.,3r, since it contains 

an internal vertex of degree three four or five.

A simple [r,s] triangulation, T^ r > l ,  s > 5  can be 

constructed from an [r - 1, s] simple triangulation by 3^,3g,y^/Yg
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or an [r, s - 1] simple triangulation by Suppose first

that T has an internal vertex v of degree four or five (figure

3.12(i)). If d(v) = 4 , then at most one of the pairs of vertices 

{a,c} and {b,d} belongs to a non-trivial 4-cycle, that is a four cycle 

containing internal vertices. Thus 3^ is used. If d(v) = 5 ,  then 

at most three of the pairs of vertices {a,c}, {a,d}, {b,e}, {b,d}, 

{c,e} belong to non-trivial 4-cycles. There is at least one vertex 

a,b,c,d,e which does not belong to any of these ?4-cycles. Thus 3^ 

is used to construct Tr,s

If T^ g has no internal vertex of degree four or five, then 

it has an external vertex v of degree two, three or four (figure 

•3.12(ii)). If d(v) = 2, then is used. If d(v) = 3, and the 

pair of vertices {a,c} does not belong to a non-trivial 4-cycle, then 

Y2 is used. If {a,c} belongs to a non-trivial 4-cycle, then b is 

an internal vertex and y is used. If d(v) - 4  and the pairs of 

vertices {a,c} and {b,d> belong to non-trivial 4-cycles, then b is 

an internal vertex with d(b) = 4, a contradiction. If {a,d} belongs 

to a non-trivial 4-cycle, then y^ is used and if not then y is 

used to construct Tr,s

(2) A simple [r,s] triangulation r > 1, s = 3, 4 can be constructed

from a simple [r - 1, s] triangulation by 3. or 3g since it contains
L' a

an internal vertex degree four or five.

A strong, simple [r,s] triangulation, T , r > 1, s > 5 can ber , s
constructed from a strong, simple [r - 1, s] triangulation by

^ strong, simple [r, s - 1] triangulation by y /y^.

It should be noted that a simple [r,s] triangulation r > 1, s = 3,4, 

is also strong.
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3,3 Transformations of trivalent maps

An edge contraction in a planar map consists in removing an 

edge with disjoint endpoints and then identifying the endpoints.

The inverse, operation is vertex expansion. Any 2-vertex connected 

planar map may be constructed from a 2-connected trivalent planar map 

by a sequence of edge contractions and edge subdivisions. Similarly 

any 3-vertex connected planar map may be constructed by a sequence 

of edge contractions from a 3-connected trivalent planar map. The

3-connected trivalent planar maps are considered as a basic or 

fundamental set of spatial arrangements in architectural plans,

(March and Earl 1977, Earl and March 1979.)

An exchange operation which allows 2-connected trivalent planar 

maps to be constructed from one another, thus allowing local changes 

to be made whilst preserving trivalency, consists of an edge 

contraction followed by a vertex expansion (figure 3.13(i)). In the 

dual planar map exchange corresponds to a diagonal transformation 

(Ore 1967), (figure 3.13(ii)). Any 2-connected trivalent planar map 

can be transformed into any other by a sequence of exchange operations.

Consider applications of edge contraction to 3-connected 

trivalent plane maps such that no edge in the boundary of the 

distinguished face is contracted and each resulting vertex is degree 

three or four. Thus the faces adjacent to the distinguished face, 

which represent regions with external aspect in the corresponding 

architectural plan, remain adjacent^after the edge contractions.

These edge contractions on 3-connected trivalent plane maps can be 

represented by marking the edges in the weak dual [r,s] triangulations 

.Let an edge be marked "c" if the corresponding edge is contracted.
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The boundary of each triangular face has at most one edge marked 

"c". Suppose that the edge contractions are further restricted so; k:'.
that no edge incident to a vertex in the boundary of the distinguished 

face is contracted. The corresponding marked [r,s] triangulations 

have no edge in the boundary of the distinguished face marked "c" 

and at most one edge in each triangular face marked "c". If the 

marked edges are removed from the triangulations, the resulting 

plane maps have internal faces bounded by three or four distinct 

edges. If all internal faces are degree four quadrangulations 

(Brown 1965) are obtained.

3.4 Rectangular Maps

The transformations in section 3.3 preserve the types of elements 

and relations, namely wall and region adjacency, but transform 

those adjacencies. Other transformations can occur which augment 

the adjacency structure, perhaps by considering other types of 

relations between the elements or other properties of the elements.

An example would be the addition of an access or permeability 

structure to a given spatial arrangement. This requires considering 

an access relation between regions, and by implication requires 

discriminating between walls which allow access and which do not 

allow, or prevent, access. Thus a new relation is considered
L» *

between elements, and new properties of some elements are considered.

In this section transformations are considered on certain 

classes of trivalent maps which give them a realization with all 

faces having a rectangular boundary.
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Consider a 3 connected trivalent plane map M(f), whose weak 

dual is an Cr,s] triangulation. Suppose there is a realization of
» v:-.

M(f) in the plane with each face, not adjacent to f, bounded by a 

rectangle. Let such a rectangular realization of M(f) be called an 

Cr,s] rectangular map. The edges of M(f) in such a realization, 

which are not incident to vertices in the boundary of f are straight 

line segments parallel to x and y coordinate axes (figure 3.14).

An [r,s] rectangular map represents an architectural plan with 

r internal rooms which are all rectangles and with the external region 

divided into s parts. The division of the external region becomes 

relevant when the plan is given geometrical properties. There are 

various facades and courtyards around the plan and their relation to 

the internal spaces are often as important as the relations between 

the internal spaces themselves.

3r,sj rectangular map is represented by the weak dual [r,s] 

triangulation with internal edges coloured x and y corresponding to 

the two directions of the line segments. Let the boundary edges be 

coloured z. Call this the dual of the rectangular map (figure 3.15). 

Two rectangular maps are considered equivalent if there is a boundary 

homeomorphism of the corresponding duals which preserves or reverses 

the colours on all internal edges.

The aim of this section is to examine the coloured [r,s] 

triangulations which correspond to [r,s] rectangular maps. The 

colourings are then considered as ornamentations of 3-connected 

trivalent plane maps which represent realizations as rectangular maps.

Consider a coloured [r,s] triangulation which is the dual of
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an [r,s] rectangular map. The colouring induces an associated 

labelling according to the scheme in figure 3.16. The associated 

labelling satisfies the following conditions.

1) Each internal face has labels of sum two.

2) Each internal vertex has labels of sum four.

A colouring of an [r,s] triangulation whose associated labelling 

satisfies (1) and (2) is called a subvalid colouring. The main 

result (proposition 3.2) of this section demonstrates that the subvalid 

colourings of [r,s] triangulations are precisely the duals of [r,s] 

rectangulation maps. However, first note that not every [r,s] 

triangulation has a subvalid colouring. Proposition 3.1 exhibits 

those which have subvalid colourings. As a preliminary some 

properties of subvalid colourings are given.

Consider a subvalidly coloured [r,s] triangulation T. Suppose 

C is a k-cycle in T which forms a simple closed curve. Consider 

the associated labelling of T. Let the labels at the vertices of C, 

which belong to faces inside C, have sum p. If there are n vertices 

inside C then by counting labels there are 2n + hp faces inside C.

Applying Euler’s formula gives p = 2k - 4. As corollaries each 3-

cycle bounds an interior face, and a non-trivial 4-cycle, that is a

4-cycle with internal vertices, has one of the forms shown in figure 

3.17. The internal edges at opposite boundary vertices on a 4-cycle 

all have the same colour and neighbouring vertices have internal 

edges of opposite colour. Note that a colouring of an [r,s]

triangulation is subvalid if and only if p = 2k - 4 for all k-cycles.

Proposition 3.1. An [r,s] triangulation T, has a subvalid colouring

if and only if s > 4 and T is simple.
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Proof. First note that each simple [r,4] triangulation has

a subvalid colouring since it is the weak dual of a 3-connected 

trivalent plane map which has a realization as an [r,4] rectangular 

map (see Earl and March 1979, Theorem 5.3, for r > 1).

The proof of the proposition is by induction on s. Suppose

that the proposition is true for all simple [r,s] triangulations for 

a given r and 4 < s < n. Consider a simple [r, n+1] triangulation

T(n-fl) . Let (u,v) be an edge in the boundary of T(n+1) . If (u,v)

does not belong to a non-trivial 4-cycle, then contract (u,v) to 

obtain a simple [r,n] triangulation which has a subvalid colouring. 

Reverse the contraction and assign colours as shown in figure 3.18.

The result is a subvalid colouring of T(n+1). Now suppose that 

(u,v) belongs to a non-trivial 4-cycle C. It may be assumed that 

(u,v) does not belong to a non-trivial 4-cycle, C , where C consists 

of vertices and edges on or in the interior of C .  Remove the 

vertices from the interior of C and contract (u,v). The result is 

a simple [r',n], r* < r, triangulation which has a subvalid colouring. 

Reverse the contraction. The 4-cycle C and its interior edges form 

a simple Cr-r', 4] triangulation, which has a subvalid colouring 

with internal edges at opposite boundary vertices all the same colour. 

Inserting this subvalidly coloured triangulation, a subvalid colouring 

of T(n+1) is obtained. The induction is com^’leted by using the 

fact that each simple [r,4] triangulation has a valid colouring.

If T has a subvalid colouring then the condition on k-cycles 

above, implies that k = 3 if and only if the cycle bounds an internal 

face. Thus T is simple and s > 4.

Proposition 3.2. Each subvalid colouring of an [r,s] triangulation
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is the dual of an [r,s] rectangular map.

Proof. The proof is by induction on r + s. Suppose the
• v;-.

proposition holds for all [r,s] triangulations with r + s ^ n. Let 

T(p,q) be a subvalidly coloured [p,q] triangulation with p + q = n + 1. 

Let the vertices in the boundary of T(p,q) be cyclic

order.

Suppose first that there is a diagonal (N.,N.), ji-j| > 2, in 

T(p,q). DecomposeT(p,q) into two parts as shown in figure 3.19. The 

parts are subvalidly coloured [r^,s^] and triangulations with

r^ + s ^ < n ,  i = 1,2, and are thus duals of [r^,s^] rectangular maps 

R(r^,s^), i = 1,2. The subvalid colourings may be chosen such that 

R(ri,Si) and R(r2 ,S2) can be assembled to form a [p,q] rectangular 

map R(p,q), whose dual is T(p,q) (figure 3.20). If !i-j1 = 2 then 

one of the parts is the [0,3] triangulation, the other is a subvalidly 

coloured [p,q-l] triangulation which is the dual of a [p,q-l] 

rectangular map R(p,q-1). A rectangular map R(p,q) whose dual is 

T(p,q) can be constructed from R(p,q-1) (figure 3.21).

Suppose next that there is a face in T(p,q) with one z and two

X or two y edges. The z edge, can be contracted to form

CZ/ a subvalidly coloured [p,q-l] triangulation which is the dual of a

[p,q-l] rectangular map R(p,q-1). A rectangular map R(p,q) whose
C' a

dual is T(p,q) can be constructed from R(p,q-1) (figure 3.22) .

Now suppose that T(p,q) has no diagonal. There is at least

one boundary vertex N^, say, with incident internal edges all 

coloured x or y. This follows from the condition on cycles in a 

subvalidly coloured triangulation. Consider the configurations in 

figure 3.23 (up to reversal of x and y colours). It is straight-
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forward to show that at least one occurs in T(p,q). If (a) occurs 

then N ) may be contracted to give a subvalidly coloured

[p,q-l] triangulation with edge (v, ^ = N^) coloured x. This

is the dual of a [p,q-l] rectangular map R(p,q-1). A rectangular 

map R(p,q) whose dual is T(p,q) can be constructed from R(p,q-1), 

(figure 3 .24).

Suppose (b) but not (a) occurs in T(p,q). First let u = N

If V is adjacent to N^} but to no other vertices in the

boundary of T(p,q), then (u,v) can be contracted to give a subvalidly

coloured [p-l,q] triangulation which is the dual of a [p-l,q] rectang-

(2) ular map R(p-l,q). An operation on R(p-l,q), of the type shown in

figure 3.25, yields a [p,q] rectangular map R(p,q) whose dual is

T(p,q). If V is adjacent to {n  , N , N, .} but to no otherk-1 k k+1
vertices in the boundary of T(p,q), then one of the configurations

in figure 3.26 occurs. In (i) contract edges (N vj,(v,N ,) andk-1 k+1
remove vertex N . In (ii), contract (N ,, v) and remove N, .K k-1 k
In each case recolour new boundary edges. Subvalidly coloured 

[p-1, q-2] and Cp-1, q-1] triangulations, respectively, are obtained. 

These are the duals of [p-1, q-2] and [p-1, q-1] rectangular maps 

R(P“1/ q-2) and R(p-1, q-1). The operations in figure 3.27, on 

R(p-l/3-2) and R(p-1, q-1), yield [p,q] rectangular maps R(p,q) whose 

duals are T(p,q) . Finally, if v is adjacent^to some N^, f- k-1, k,k+l 

and (v, N.) is coloured x then decompose T(p,q) as shown in figure 

3.28 and add new vertices n^ and n^. The parts are subvalidly • 

coloured Cr^,s^] triangulations with r ^ + s ^ < n ,  i = 1, 2, and are 

thus duals of [r^,s^] rectangular maps R(r^,s^), i=l, 2. These 

can be assembled to form a [p,q] rectangular map R(p,q) whose dual 

is T(p,q) (figure 3.29). If (v,N^) is coloured y then the argument 

is similar.
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Second, let u and v be internal vertices of T(p,q). The edge 

(U/V) can be contracted to give a subvalidly coloured Cp-l,q] 

triangulation, which is the dual of a [p-l,q] rectangular map 

R(P“l/<3) • A [p,q] rectangular map R(p,q) whose dual is T(p,q) can 

be constructed from R(p-l,q) by an operation of the type shown in 

figure 3.30.

Finally suppose (c) occurs in T(p,q). If v is not adjacent 

to N., i 7̂ k-1, k, k+1, then (N^,v) can be contracted to give a 

subvalidly coloured Cp-l,q] triangulation which is the dual of a 

[p-l,q] rectangular map R(p-l,q). A (p,q) rectangular map R(p,q) 

whose dual is T(p,q) can be constructed from R(p-l,q) by an operation 

of the type shown in figure 3.31. If v is adjacent to some N^, 

i ^ k-1, k, k+1, then (N^,v) is coloured x and decompose T(p,q) 

as shown in figure 3.32, where n^ and n^ are new vertices. The 

components are subvalidly coloured [r^,s^] triangulations r^ + s^ ^ n, 

i = 1,2 and are thus duals of [r^,s^] rectangular maps R(r^,s^), 

i = 1,2. These can be assembled to form a [p,q] rectangular map 

R(p,q) whose dual is T(p,q) (figure 3.33).

To complete the induction, the subvalidly coloured Co,4] triang

ulation is the dual of the rectangular map in figure 3.34.

The proof of proposition 3.2 might be facilitated by the use of 

the methods of construction for [r,s] triangulations given in 

section 3.2. The coloured versions of the operations given there 

may be related to operations on the rectangular maps. This idea 

can certainly be used to show that each subvalid colouring of an 

Er,4] triangulation r ^ 1 is the dual of an Cr,4] rectangular map. 

However, it seems that in general the number of cases to be 

considered present major complications.
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Some classes of rectangular maps are now examined. A 

subvalidly coloured [r,s] triangulation has four types of triangular 

faces with (a) no boundary edges, (b) one boundary edge, one x edge 

and one y edge, (c) one boundary edge and two x edges or two y edges, 

or (d) two boundary edges.

The faces of type (b) , (c) and (d) represent "comers" in the 

boundary of the corresponding plan. The respective corners have 

external angles of Sn/g, ir, and 2ir (figure 3.35) . If there are 

only faces of type (a) and (b) then the colouring is called valid.

The internal edges of the corresponding Cr,s] rectangular map form 

an [r,s] rectangulation. The validly coloured [r,s] triangulation 

is called the augmented dual of the rectangulation. An [r,s] 

rectangulation represents an architectural plan with r internal 

rooms which are all rectangles and with the external region divided 

into s parts at the 3 ^ / 2 corners in the boundary of the plan (figure 

3.36 (i)).

A valid colouring of an Cr,s] strong triangulation corresponds 

to a rectangulation in which each line segment belongs to the boundary 

of an internal rectangle. Let these be called strong [r,s]

2 2  rectangulations (figure 3. 36 (ii) ) .They have a boundary which is a right

angled polygon.

Finally the [r,4] rectangular maps are considered. Each 

subvalid colouring of an [r,4] triangulation is valid and the 

triangulation is strong. It is thus the augmented dual of an [r,4] 

strong rectangulation. These are the rectangulations in which the 

boundary is a rectangle. They are referred to simply as 

rectangulations.
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The transformation which gives a valid colouring to a simple 

[r,4] triangulation, r > 1, specifies a rectangulation. In order 

to examine the effect of this ornamentation the numbers of rooted 

simple [r,4] triangulations and validly coloured rooted simple [r,4] 

triangulations are compared. The number of validly coloured rooted 

simple [r,4] triangulations has been given by Flemming (1977) for 

r < 10, (table 3.9), by counting the corresponding "fixed" 

rectangulations using a recurrence based on the fact that each 

rectangulation has a "corner" rectangle in one of the configurations 

in figure 3.3 7. The comparison with the number of rooted simple

(2) [r,4] triangulations (Mullin 1965), (table 3.10), suggests that for

small numbers of rectangles, namely r < 6, the colouring transform

ation cannot be applied in many different ways for a given triangulation 

However, as r increases, the choices presented by the colouring 

transformation increase substantially.

o
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FIGURE 3.1 Near trivalent rooted plane maps.
2-vertex connected trivalent plane map.

denotes a

FIGURE 3.2 Trivalent planar maps with three edges
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M M -  V *

FIGURE 3.3 Weak dual rooted plane map
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FIGURE 3.4 Rooted [r,s] triangulations, r < 1, s < 7. A
number on a triangulation denotes the number of rooted 
versions.

75



V.

FIGURE 3.5 [r,s] triangulations, r + s < 7, up to
boundary homeomorphisms.

76



FIGURE 3.6 [r,s] triangulations, r < 1, s < 7, which have
reflection symmetry.
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s 3

FIGURE 3.7 Simple [r,s] triangulations, r < 1, s < 7. A 
number on a triangulation denotes the number of rooted versions.
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FIGURE 3.8 Face splitting

O
“ 2

V

A
“ 3

a I.

FIGURE 3.9 Particular cases of face splitting, the 
operations and ag.
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35

FIGURE 3.10 The operations 32»3s,3i+ and gg dual to 
0 2 ,03,04 and ctg.

Yi Y2

Y3
Y4

Ys Ye

FIGURE 3.11 Operations , 1 ^ i < 6
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b c

FIGURE 3.12 Vertices in Tr,s

1 1

(i) (ii)

FIGURE 3.13 (i) Exchange operation and (ii) diagonal
transformation.
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FIGURE 3.14 Rectangular maps

6

FIGURE 3.15 Duals of rectangular maps in figure 3.14.
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FIGURE 3.15 Face labels associated with subvalid colouring,

1

0

FIGURE 3.17 Non trivial 4-cycles.
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u « u = v

FIGURE 3.18 Assignment of edge colours to T(n+1)

o
N;

FIGURE 3.19 Decomposition of T(p,q)

N-

Rlysjl R(p,q)

FIGURE 3.20 Assembly of R(p,q) from R(r^,s^) and

84
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N.1+2
R(p.q-1 )

N.

N :i + 2
R(p.q)

FIGURE 3.21 Construction of R(p,q) from R(p,q-1).

O
Rfp,q-1 ) RIp.q)

FIGURE 3.22 Construction of R(p,q) from R(p,q-1)

N.

n Nk-1

( a)

u

ib)

FIGURE 3.23, Configurations in T(p,q).
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k-1

Rlp,q-1) RIp.q )

FIGURE 3.24 Construction of R(p,q) from R(p,q-1)

o
u =N k-1 u = N, .k-1 V

R(p-1,q ) R(p.q)

FIGURE 3.25 Construction of R(p,q) from R(p-l,q)

N,'k-1

(ii)

FIGURE 3.26 Configurations in T(p,q)
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R(p-1.q-2)
(i)

R(p.q)

C)
V i  = \  / k-1 k+1

R( p-1. q-1 ) R(p,q)
(ii)

FIGURE 3.27 Construction of R(p,q) from (i) R(p-l,q-2) 
and (ii) R(p-1,q-1).

N. N. N.

FIGURE 3.28 Decomposition of T(p,q).
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="k-1 V

N.1

Rlr.ŝ R(r_s J

/  N.

RIp.q)

FIGURE 3.29 Assembly of R(p,q) from and

o
R( p - 1 ,  q ) R ( p , q l

FIGURE 3.30 Construction of R(p,q) from R(p-l,q).

R(p-1,q) R ( P . q  )

FIGURE 3.31 Construction of R(p,q) from R(p-l,q).



N NN

O
FIGURE 3.32 Decomposition of T(p,q)

V

N.1
R (r. ,s R(p.q 1

FIGURE 3.33 Assembly of R(p,q) from R(r^,s^) and RCr^jS^)

L ''p-

> / & _

FIGURE 3.34 The [0,4] rectangular map and its dual
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«r

O FIGURE 3.35 Corners in rectangular maps

(i) (ii)

FIGURE 3.36 (i) a [3,8] rectangulation and (ii) a strong
[3,6] rectangulation.

FIGURE 3.37 The "top left corner" rectangle in a 
rectangulation.
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n t J 6 T 9 9 10 11

1 3 13 68 399 2536 16 965 118 668

TABLE 3-1 3-connected trivalent rooted plane maps with 
n ^ 11 faces.

3 4 5 6 7 8 9 10 11 12

1 1 1 2 5 14 50 233 1249 7595

TABLE 3.2 3-connected trivalent planar maps with n < 12 faces.

4 24 176 1344 13 056 124 032

TABLE 3.3 2-connected trivalent rooted plape maps with 
n < 9 faces.
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r/' 10

O

o

0 1 2 5 14 42 132 429

1 1 5 21 84 330 1287 5005

2 3 20 105 504 2310 10 296

3 13 100 595 3192 16 170

4 68 570 3675 21 252

5 399 3542 24 150

6 2530 23 400

7 16 965

TABLE 3.4 Rooted [r,s] triangulations. r + s < 10.

r/s 3 4 5 6 7 8 8 10

0 1 1 1 4  6 19 49 150

1 1 2 5 16 48 164 599

2 1 6 21 88 330 1302

3 5 26 119 538 2310

4 24 147 735 3568

5 133 892 4830

6 846 5876

7 5661

TABLE 3.5 [r,s] triangulations, r + s < 10, up to
orientation preserving boundary homeomorphisms.
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r/s 3 4 5 ' 6 7 8 9

0 1 1 1 3 4 12 27

1 1 2 4 : 11 28 91 311

2 1 5 14 53 178 685

3 4 18 69 ! 295 1196

4 16 88 396' 1867

5 78 489 2503

6 457 3071

7 2938

TABLE 3.5 [r,s] triangulations, 
boundary homeomorphisms.

r + s ^ 10, up to

r/^ 3 4 5 6 7 8 9 10

0 1 1 1 2 2 5 5 14
1 1 2 3 6 8 18 23
2 1 4 7 18 26 68

3 3 10 19 52 82

4 8 29 57 166

5 23 86 176

6 68 266

7 215

TABLE 3.7 [r,s] triangulations, r + s < 10, which

10

82

have reflection symmetry.
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r/s 3 4 5 6 7 8 9 io

0 1 2 5 14 42 132 429 1430

1 1 1 6 28 120 495 2002

2 0 2 15 84 420 1980

3 1 6 50 308 1680

4 3 22 195 1274

5 12 91 840

6 52 408

7 241

TABLE 3.8 Rooted simple [r,s ] triangulations, r + s < 10,

r 1 2 3 4 5 6 7 8 9

1 2 6 24 116 642 3938 26 194 186 042

10

TABLE 3.9 Validly coloured rooted simple [r,4] 
triangulations, r ^ 10.

r 1 2 3 4 5 6 7 8 ' 9 10

1 2 6 22 91 408 1938 9614 49 335 260 130

TABLE 3.10 Rooted simple [r,4] triangulations, r < 10.
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CHAPTER 4 

RECTANGULAR SHAPES
' I.: '

4.1 Introduction

In section 3.4 rectangulations were considered as a transformation, 

by the addition of a colour (or label) structure, of certain classes 

of trivalent plane maps. The colour structure specified the 

directions of the edges in the rectangulation. In a sense edges 

were aligned so that sets of edges formed lines. However, if 

rectangulations are considered such that the component lines lie on 

the lines of a grid, then roughly speaking there are more detailed

^2^ alignment relations arising from the ordering imposed by the grid

structure. Thus for a given colour structure on a trivalent plane 

map there may be many rectangulations considered in this new sense 

as arrangements of lines on the lines of a grid. For example the 

arrangements in figure 4.1 correspond to the same coloured simple 

[5,4] triangulation.

This chapter will examine the representation, classification 

and construction of architectural plans whose walls lie along a 

specified number of directions. In the case of rectangulations

(2) there are two directions at right angles. The walls are represented

by line segments and adjacent walls in the same direction form 

maximal walls, which, in turn, are represented by maximal line 

segments. This examination is restricted to the case in which 

there are two specified directions at right angles.

A finite set of closed, finite, line segments (or lines for 

brevity) in two dimensional euclidean space is called a shape. Any 

given shape can be considered as a unique finite set of maximal lines,
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that is, a set of lines such that the union of any two is. not a 

line (Stiny 1980). Denote a shape by its set of maximal lines 

S. A subshape of a shape is a shape, each of whose maximal lines 

is contained in a maximal line of the original shape. Consider a 

subshape S' of a shape S such that S' £ s.and no line in s' is 

coincident with a line in S - S '. Then S' is called a component 

of S and S is connected if it has one component.

In this section the architectural plans are considered whose 

walls are represented by lines in precisely two perpendicular directions 

The "grid structure" mentioned earlier is referred to as a rectangular 

grating, or simply a grating. A rectangular grating is a shape in 

which the maximal lines are parallel to cartesian coordinate axes, 

four of the maximal lines share endpoints (the boundary rectangle) 

and the rest have endpoints coincident with the boundary rectangle 

(the internal maximal lines). A grating is an (f,m) grating if 

there are Z + 1 maximal lines parallel to the y-axis and m + 1 maximal 

lines parallel to the x-axis.

A subshape of an (Z,m) rectangular grating such that each 

maximal line has endpoints at a point of intersection of the maximal 

lines in the original grating is an (f,m) rectangular shape. An 

(£,m) rectangular shape is minimal if it is not an {Z',m') rectangular 

shape with f' + m' < f + m.

Each (f,m) grating can be mapped onto the corresponding (f,m) unit 

square grid and this mapping induces a map of the (£,m) rectangular 

shapes onto rectangular shapes on an iZ,m) square grid. Since 

interest centres upon alignment relations rather than precise 

geometric dimensions of the grating, these rectangular shapes may
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be considered as representative or canonical rectangular shapes. 

Rectangular shapes are equivalent if the corresponding representative 

shapes are the same under translation. Other equivalences can also 

be defined on rectangular shapes according to the euclidean transform

ations on the canonical shapes. The inverse of the map which

assigns the canonical rectangular shape to a given rectangular

shape may be considered as an operation which dimensions the 

representative shape.

4.2 Classification of rectangular shapes

Some classes of rectangular shapes have been examined, as repres

entations of architectural arrangements on grids. These are usually 

minimal canonical shapes. Rectangular dissections have been examined 

(Mitchell et al 1976, Earl 1977, Krishnamurti and Roe 1978, Bloch 1979) 

together with polyomino shapes (March and Matela 1974). It ought to 

be noted that the rectangular dissections which are considered for the 

catalogue in Mitchell et al (1976) seem to be precisely the 

rectangulations considered in section 3.4 above. In this thesis 

the term rectangular dissection is reserved for arrangements which 

are specifically embedded on a grating or grid. The terms 

rectangular dissection and rectangulation have been used inter

changeably in the previous literature.

Definitions of rectangular dissections and general polyomino- 

type shapes are given first and then other classes of rectangular 

shapes defined. A rectangular dissection is a rectangular shape in 

which four maximal lines share endpoints (the boundary rectangle) and 

the rest have endpoints coincident with other maximal lines but not at 

their endpoints (Earl 1978).
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A polyomino is defined completely by its boundary polygons. 

These boundary ploygons are considered to form the rectangular 

shape. A general polyomino-type shape is a rectangular shape in 

which each maximal line shares both endpoints with other maximal 

lines. On an {t,m) square grid these shapes can be "filled in" 

with the grid lines to produce arrangements of squares. The result 

is not necessarily a polyomino but a general arrangement of squares.

An endpoint of maximal lines in a rectangular shape may be 

(a) not coincident with any other maximal line in the shape

. (b) coincident with another maximal line at its endpoint

(c) coincident with another maximal line not at its endpoint. 

There are seven types of rectangular shape, based upon the above 

distinction, depending on whether they only have endpoints of 

kinds {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. For instance 

a rectangular dissection is a rectangular shape of type {b,c} with 

precisely four maximal lines which share endpoints. There are no 

rectangular shapes of type {c} and rectangular shapes of type {b} 

are the general polyomino-type shapes. A rectangular shape is 

called trivalent if any two maximal lines either do not intersect 

or intersect at an endpoint of at least one of the maximal lines.

4.3 Construction of rectangular shapes

To examine the construction of these classes of shapes use 

is made of subshape replacement rules. As for the construction of 

maps in Chapters 2 and 3 and the construction of graphs in the later 

Chapter 6 . These replacement rules are given in an informal

way. A rigorous and formal approach would require the specification 

of map and graph grammars. In this chapter subshape replacement
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rules are presented informally as schemata and it is relatively 

straightforward to formalize these schemata as parametric shape 

grammars in the sense of Stiny (1977). A further point should 

perhaps be made. The grammars mentioned above usually have 

replacement rules in which the submaps, subgraphs and subshapes are 

labelled or marked. Concentrating on shapes, the initial shape is 

labelled or marked at the beginning; the labels and markers are 

erased to terminate a construction using the grammar. If all the 

labels and markers are erased then a shape in the language specified 

by the grammar is constructed. By choice of erasing rules it is 

possible to test for specified properties in the shape being 

constructed.

The (£,ra) rectangular shapes of type {a,b,c} are trivially 

constructed from an (f,m) grating, marked as shown in figure 4.2(i) 

using the shape and erasing rules in figure 4.2(ii). For (f,m) 

rectangular shapes the initial shape is taken as an (f,m) grating.

The first rule marks this shape as shown in figure 4.3. Consider 

the rules shown in figure 4.4 (i) which remove lines and change 

the markers to produce marked subshapes of the original marked 

grating. Figure 4.4(ii) gives erasing rules for the markers.

The rectangular shapes of the different types are generated 

by subsets of these rules which consist of rules (l)-(6) together 

with the erasing rules given below.

{a,b,c}--------------- <---> {a ,B,C,D,E,f }

{b,c> <---> {a ,C,D,E,F}

{a,c} <---> {a ,B,D,E,f }

{a,b} <---> {A,C,D,F>

{b} <---> {A,C,D,F}

{a} <---> {A,B,D,F} gg
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Trivalent shapes of the corresponding classes are generated by 

deleting rule A from the above subsets of rules.

Rectangular dissections are a subset of the rectangular shapes 

of type {b,c}. Consider the marking of the initial grating shown 

in figure 4.5 which ensures that the boundary rectangle is preserved 

during a generation which uses only the rules 1,2 and 3. Rectangular 

dissections are generated by the rules {1,2,3, A,D,E> and trivalent 

rectangular dissections by {1,2,3, D,e }. Minimal rectangular 

dissections are generated by {1,2, A,D,E> and minimal trivalent 

dissections by {1,2, D,e }.

A class of rectangular dissections which has been investigated 

(Earl, 1977, 1978) consists of non-aligned minimal dissections.

These possess exactly one maximal line on each grid line. They are 

also defined as those dissections produced by the rules {2, A,D,E}. 

The minimal trivalent non-aligned dissections are generated by the 

rules {2, D,E}.

An extensive algorithmic investigation of rectangular 

dissections is given in Krishnamurti and Roe (1978) and enumeration 

results in Bloch and Krishnamurti (1978). The methods used are 

not immediately applicable to general rectangular shapes since the 

rectangular "spaces" in the dissections are used as an essential 

coding feature. Lines appear as boundaries between the spaces.

Further classification of rectangular shapes is given by 

considering the intersections of maximal lines. An intersection 

may be

(d) At the endpoint of no maximal line.
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(e) At the endpoint of precisely one maximal line,

(f) At the endpoint of precisely two maximal lines.

A maximal line may intersect

(g) No other maximal lines,

(h) At least one other maximal line,

(i) Precisely one other maximal line.

These distinctions give rise to 53 types depending on whether the 

intersections and maximal lines are only of particular kinds correspond

ing to non-empty subsets of {d,e,f,g,h,i). For example, the 

types of rectangular shape corresponding to {d,i}, {e,i}, {f,i} consist

of +, T and L configurations respectively.(figure 4.6). These classes

can be generated using the rules (l)-(6) and further erasing rules 

(figure 4.7).

4.4 Representations of rectangular shapes

The aim of this section is to examine the incidence structures

among the elements, that is, the regions and maximal lines, in 

trivalent rectangular shapes. First the maximal line adjacency 

structures are considered and then the incidence structures of regions 

and maximal lines.

4.4.1 Maximal line adjacency

Suppose that the maximal lines in a trivalent rectangular 

shape are represented by vertices and the intersections of maximal 

lines by edges between the corresponding vertices. The cyclic order 

of the edges at a given vertex is the cyclic order of the inter

sections of maximal lines with the corresponding maximal line.

The result is a plane pseudo-map called the maximal line adjacency 

map, whose faces represent the regions in the corresponding trivalent
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rectangular shape. The distinguished face represents the 

external region (figure 4.8).

The maximal line adjacency map of a connected trivalent 

rectangular shape is a plane map in which each face has even degree 

and there are no 2-cycles. Let such a map be called a q-map.

Two q-maps are considered equivalent if there is an oriention 

preserving boundary homeomorphism between them. Given a 

connected trivalent rectangular shape all rotated versions have 

the same maximal line adjacency map.

The maximal line adjacency map of a connected trivalent 

rectangular shape of type {b,c} is a q-map with no vertices of 

degree one. The maximal line adjacency map of a trivalent 

rectangular dissection is a q-map with all faces of degree four.

A q-map, Q, has all faces of degree four if and only if 

|v(Q)| = |f(Q)1+ 2. Let a generalized rectangular dissection 

be a connected trivalent rectangular shape of type {b,c} in which 

each finite region is bounded by a rectangle. The maximal line 

adjacency map of a generalized trivalent rectangular dissection 

is a q-map with no vertices of degree one and all non-distinguished 

faces of degree four.

Proposition 4.1. Each q-map is the maximal line adjacency map 

of a connected trivalent rectangular shape.

Proof. The proof is by induction on the number of vertices.

Suppose the proposition holds for all q-maps with at most n vertices. 

Let Q(n+1) be a q-map with n+1 vertices. If Q(n+1) has a 1-vertex 

separator then it is obtained from q-maps with less than n+1 vertices
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by identifying vertices. These q-maps are the maximal line 

adjacency maps of connected trivalent rectangular shapes, which 

can be assembled at the maximal line corresponding to the 1- 

vertex separator to form a connected trivalent rectangular shape 

whose maximal line adjacency map is Q(n+lj.

Now suppose that Q(n+1) is 2-vertex connected and consider 

a non-distinguished face with (cyclically ordered) vertices 

{u^,u^,...,U2^} in its boundary. If k > 2 then at least one of 

the pairs of vertices {u^,u^} or ^^2'^2k^ does not belong to a 

4-cycle since Q(n+1) has no cycle of odd length. Suppose 

2 2  ^^2'^2k^' identify u^ and u^^ forming a q-map with n vertices

(figure 4.9(i)), which by induction corresponds to a connected 

trivalent rectangular shape. If k = 2 then at least one of the 

pairs of vertices {u^,u^} or does not belong to a 4-cycle

other than (u^,U2 ,u^,u^). Suppose {u^fU^}, and identify u^ and 

u^, forming a q-map with n vertices (figure 4.9 (ii)) which by 

induction corresponds to a connected trivalent rectangular shape. 

One of the operations of the types shown in figures 4.9 (iii) and 

(iv), for the cases k = 2 and k > 2, respectively, yields a 

connected trivalent rectangular shape whose maximal line adjacency 

map is Q(n+1). To complete the induction, the edge map is the 

maximal line adjacency map of a connected trivalent rectangular 

shape.

To examine the enumeration of q-maps, the rooted q-maps are 

considered. Note first that a q-map has a unique 2-vertex 

colouring which corresponds to the two sets of maximal lines in a 

corresponding connected trivalent rectangular shape. Consider a
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rooted q-map, O. If the root vertex is coloured x, then a 2-vertex 

colouring with x and y, say, is uniquely determined. Consider the 

rooted map constructed from the (W(F),W(V)), rooted derived map of 

Q, by deleting (W(F),W(E)) edges and contracting each (W(E),y) edge. 

Let the W(F) vertices be labelled z. Let the result be called a 

rooted z-map. Each rooted z-map is a 3-coloured rooted triangular 

map with root edge from a z-coloured to an x-coloured vertex. 

However, such a map may have multiple (x,z), (y,z) and (x,y) edges. 

It is a rooted z-map if and only if it has no multiple (x,y) edges. 

Consider the operation shown in figure 4.10 which splits an (x,y) 

edge and inserts a 3-coloured rooted triangular map. Each 3- 

coloured rooted triangular map with root edge directed from a z-

coloured to an x-coloured vertex is constructed from a unique rooted

z-map by a unique set of these operations at distinct (x,y) edges 

in the original rooted z-map. If the original rooted z-map has 

n^ z-vertices of degree 2i > 4 then there are in^ distinct (x,y)

edges at which the operation may be applied.

The 3-coloured rooted triangular maps with root edge directed 

from a z-coloured vertex to an x-coloured vertex, with n^ non-root 

z-vertices of degree 2i, i = 1, 2, ..., and root vertex degree 

2k, k = 1, 2, ..., have been enumerated in their dual form by Tutte 

(1953) . Let the number with n^ non-root z-vertices of degree 

2i > 4 and root vertex degree 2k ̂  4 be denoted by a(k; n^,n^,...). 

Let b(k; n^fn^,...) denote the number of rooted z-maps with n^ non

root z-vertices of degree 2i > 4 and root vertex degree 2k ^ 4.

Let A(x ,x ,x ,— ) = A(x) and B(x.,x„,x^,— ) = B(x) be the 
1 Z J —  1 2 3  —

corresponding generating functions. By using the construction of

3-coloured rooted triangular maps given above these generating
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functions are related in the following way:

A(x) = B(x^{l+A(x)}, Xg { 1 + A ( x ) x _ { l + A ( x ) ...). (1)

Let a(k;n) and b(k;n) denote the number of 3-coloured rooted 

triangular maps and rooted z-maps respectively, with n non-root 

z-vertices each of degree four and root vertex degree 2k > 4. If 

the corresponding generating functions are A(x,y) and B(x,y) then

A(x,y) = B(x{l+A(x,y)}, y{l+A(x,y)}^). (2)

Let a(n) and b(n) denote the number of 3-coloured rooted 

triangular maps and rooted z-maps respectively, with n z-vertices 

each degree four. If the corresponding generating functions are 

A(x) and B(x) then

A(x) = B(x {1+A(x)}^). (3)

Finally let c(k;m,n) and d(k;m,n) denote the number of 3-

coloured rooted triangular maps and rooted z-maps respectively, with

m X and y-vertices, n non-root z-vertices each of degree at least

four and root vertex degree 2k > 4, then

c(k;m,n) = aCkjn^ ̂ n^ , .. . ) , (4)

Where the summation is taken over "^fn^,..., which satisfy

n^ + n^ +... = n and k + n2 + 2n^ + ... = m - 1. If the corresponding

generating functions are C(x ,x ,x.) = C(x) and D(x.,x„,x_)1 / 3  —  1 2 3
then

C(x) = — -—  D(x, ,x„ {1+C(x) }, x,{l+C{x) }) . (5)
“  1+C(x) -  3 -

These generating functions are now interpreted for rooted 

q-maps. The b(k; n^fU^, ...) are the numbers of rooted q-maps with

distinguished face degree 2k and n^ non-distinguished faces of

degree 2i. The b(k;n) are the numbers of rooted q-maps with
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distinguished face degree 2k and n non-distinguished faces each of 

degree four. The d(k;m,n) denote the number of rooted q-maps with 

distinguished face degree 2k, m vertices and n non-distinguished 

faces. The b(n) denote the number of rooted q-maps with n faces 

each of degree four.

Consider a q-map with all faces degree four. This is the 

maximal line adjacency map of a trivalent rectangular dissection.

The vertices in the boundary of the distinguished face correspond to 

the maximal lines forming the boundary of the dissection. Consider 

the rooted maximal line adjacency map with root edge from the vertex 

2 2  corresponding to the "top" line in the.boundary to the "left" line

in the boundary. These rooted maximal line adjacency maps of 

trivalent rectangular dissections with n-1 internal regions are 

enumerated by b(n). They are the rooted quadrangulations of a 

quadrilateral (Brown 1965) with n-2 internal vertices and thus

12(3n-4)I 2(3n-3)I
" (n-2)I(2n)! " n:(2n-l): *

The corresponding rooted z-maps are the (W(E), W(V)) or 

(W(E), W(F)) rooted derived maps of the 2-vertex connected rooted 

plane maps. Thus b(n) is the number of 2-vertex connected rooted 

plane maps with n edges (see section 2.2.2). These rooted plane 

maps provide further representations of trivalent rectangular 

dissections; the network representations. To each rooted q-map 

there are two network representations, the x and y-networks, 

depending on whether the (W(E), W(V)) or (W(E), W(F)) rooted derived 

maps are considered. The x and y-networks are dual rooted plane 

maps. The x-network has vertices corresponding to "horizontal" 

maximal lines, faces corresponding to "vertical" maximal lines and
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edges corresponding to regions. The y-network has vertices 

corresponding to "vertical" maximal lines, faces to "horizontal" 

maximal lines and edges to the regions (figure 4.11).

The q-maps with all faces of degree four are the quadrangulations

of a quadrilateral up to orientation preserving boundary homeomorphisms

They are enumerated by Brown (1965), although there is an error in

the generating function equation for the rooted quadrangulations

of type "[n,m;2]" since equation (11.2) requires another term,
4 —  4namely (1 + y W )y , to be added on the right hand side. Taking 

this into account the number of quadrangulations of a quadrilateral 

with n internal vertices, up to orientation preserving boundary 

homeomorphisms, that is, the number of maximal line adjacency maps 

of trivalent rectangular dissections with n+1 internal regions, is 

given by:

1/4 (l"n + 2”n +

12 (3n + 2)1

o
where _ U 1 n nl (2n + 4)I

U _ (3n) I________ ^ 3(3n - 1) !_________  ^ 3(3n - 4) I
2 2n

2^2n+l

nl (2n + 1)1 (n - 1) : (2n + 1)1 (n - 2)1 (2n - 1) 1

^ 5(3n - 5) 1_________
(n - 3)1 (2n - 1)1

6 (3n + 2) 1 
nl (2n + 3)1

4%4n =
nl (2n + 1)1

4*4n+k = ° if k = '
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Consider the class of trivalent rectangular dissections which 

have no subshape, except a single rectangle, which is a trivalent 

rectangular dissection. They are irreducible dissections, in the 

sense that they are not formed by the "addition" of two or more 

dissections. The maximal line adjacency maps of irreducible 

trivalent rectangular dissections are precisely the '^q-maps with 

all faces degree four and with each 4-cycle bounding a face. These 

are the simple quadrangulations of a quadrilateral (Mullin and 

Schellenberg 1968). The "addition" of dissections, considered in 

terms of the q-maps, consists in the quadrangulation of quadrangular 

faces, including the external face (figure 4.12) .

The rooted q-maps with all faces degree four and with each

4-cycle bounding a face are enumerated by Mullin and Schellenberg 

(1968). The corresponding rooted z-maps are the (W(E), W(V)) or 

(W(E), W(F)) rooted derived maps of the 3-vertex connected rooted 

plane maps. Thus the network representations of the irreducible 

trivalent rectangular dissections are precisely the 3-vertex 

connected rooted plane maps. The "addition" of dissections, 

considered in terms of the network representation, consists in a 

simple operation, at any edge, including the root-edge (figure 4.13).

4.4.2 Region-maximal line incidence

Consider a q-map, Q, which is the maximal line adjacency map 

of a given connected trivalent rectangular shape of type {b,c}. 

Suppose that the vertices corresponding to maximal lines parallel to 

the X  and y-axes are labelled x and y respectively. The labels 

form the 2-colouring of Q. Consider the derived map Q' and the 

sub-map of Q' obtained by deleting vertices corresponding to the
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edges of Q, and labelling as z the vertices corresponding to the 

faces of Q. There is a distinguished z-vertex, denoted by z*, say, 

corresponding to the distinguished face of Q. This map is called 

the region-maximal line incidence map of the shape (figure 4.14(ii)). 

A map constructed in this way with x,y and z labels on the vertices 

is called an s-map. Two s-maps are considered equivalent if there 

is an orientation preserving homeomorphism between them which 

preserves x, y and z labels together with the distinguished z-vertex.

The s-maps are the 2-vertex connected planar maps with all 

faces degree four, vertices labelled x,y,z such that each face has 

^2^ two non-adjacent z-vertices, one x-vertex and one y-vertex. No two

faces share both an x and a y-vertex. There is also a distinguished 

z-vertex.

Each s-map is the region-maximal line incidence map of a u.

connected trivalent rectangular shape of type {b,c}. If X, Y, Z

denote the sets of x, y, z-vertices, respectively, in an s-map and 

there are n^ non-distinguished z-vertices of degree 2i > 4, and z*- 

vertex degree 2k > 4, then since there are J^in^ + k faces, Euler's 

formula gives |x| + |y| = (i-l)nu + k + 1. If all non-

22) distinguished z-vertices are degree four then |x| + |y| = |z| + k ,

and if all z-vertices are degree four then |x| + |Y| = |Z| + 2 .

Also if IXI + IY I = |zI + 2  then all z vertices are degree four.

Thus an s-map is the region-maximal line incidence map of a trivalent 

rectangular dissection if and only if |x| + |Y | = |z| +2.

4.4.3 Oriented region-maximal line incidence

If the edges of a region-maximal line incidence map of a given 

connected trivalent rectangular shape of type {b,c} are directed
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from X to z (y to z) if the x-vertex (y-vertex) represents a 

maximal line above (to the left of) the region represented by the 

z-vertex and from z to x (z to y) if the x-vertex (y-vertex) 

represents a maximal line below (to the right of) the region 

represented by the z-vertex. The result is called the oriented 

regional-maximal line incidence map (figure 4.14(iii)).

Consider an s-map with directions on its edges. It has an 

associated labelling according to the scheme in figure 4.15 (up to 

reversal of directions). Such an oriented s-map is validly oriented 

if the associated labelling has precisely three "1" labels in each 

face, the sum of the labels at each non-distinguished z-vertex is 

+4, and at z* is -4, the sums of the labels at each x and y-vertex 

is +2.

There are four possibilities for the labels in the faces 

(figure 4.1C), thus eight possibilities for the directions on the 

edges in a face. The oriented region-maximal line incidence map 

of a connected trivalent rectangular shape of type {b,c} is a 

validly oriented s-map. The eight types of face correspond to 

the possible intersections of maximal lines (figure 4.17).

Two validly oriented s-maps are considered equivalent if 

the underlying s-maps are equivalent under an orientation preserving 

homeomorphism which also preserves the directions on the edges.

Before proceeding a result concerned with cycles (not 

necessarily directed) in a validly oriented s-map is demonstrated.

A cycle C, length 2k > 4 divides the labels at each vertex on the 

cycle into two sets, the interior and exterior, say. Let there be
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m interior "-1" labels and n interior "+1" labels at z-vertices in-C, 

Also let there be p interior "+1" labels at x and y-vertices on C. 

Let there be v^ z-vertices in the interior of C, with degree 2i ^ 4, 

and ^v^ = V. Also let there be w x and y-vertices in the interior 

of C. Suppose first that the distinguished z-vertex either lies

on C or in the exterior of C. The number of faces in the interior

of C is

liVi + ^/2 (m + n) . (8)

The number of "-1" labels in the interior of C is 

(2) %(i - 2)v^ + m . (9)

Thus the number of faces in the interior of C is also

2w + p -  ( i - 2 )  v^ + m) . (10)

Equations (8) and (10) give

2w + 2v + p - 2 ^iv^ - 3/2 m - l/g n = O . (11)

Euler's formula gives

^2^ V + w + 2k - (Jiv^ + I/2 (m + n)) - k = 1 . (12)

Equations (11) and (12) give

4k = 2p + (n - m) + 4 . (13)

If Z = n - m is the sum of the labels at z-vertices on C then

4k = 2p + £ + 4 . (14)

If the distinguished z-vertex lies in the interior of C then it may 

be shown that,

4k = 2p + Z - 4 . (15)
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Equations (14) and (15) can be used to give results on 

directed paths and cycles in a validly oriented s-map S, with all 

non-distinguished z-vertices of degree four. Let directed paths 

consisting of only (x,z) and (y,z) edges be called (x,z) and (y,z) 

directed paths, respectively. It is straightforward to show that 

each directed cycle contains the distinguished z-vertex, z*.

Thus if z* is removed fromS the result is an acyclic directed map.

It is shown that each pair of non-distinguished z-vertices, 

z^,z^ in S belong to an (x,z) or (y,z) directed path, which avoids 

z*. Both z^ and z^ lie on directed (x,z) and (y,z) cycles, which

2*2 pass through z*. The configuration in figure 4.18 occurs. If

z^ = z^ or z^ = z^ the result follows. Suppose z^ z^ and z^ z^,

let C denote the boundary cycle and Z(C) denote the z-vertices on 

C and in the interior. Note that z* k Z(C). Consider the vertices 

x^ and y^ adjacent to z^. There is a directed edge from x^ to z^ 

or from y^ to z^ for some z^ e Z(C) - z^, suppose (x^,z^). Thus

there is a directed (x,z) path from x^ to a vertex on C. Either 

the required directed path is constructed or a similar configuration 

to figure 4.18 is created with bounding cycle C ,  Z(C') <= Z(C). 

Repeating the argument eventually yields the required directed path.o
Finally each pair of non-distinguished z-vertices in S do not 

belong to both (x,z) and (y,z) directed paths which avoid z*. This 

follows immediately from (14) and (15) (see also Flemming (1980)).

Consider a valid orientation of an s-map, S. Note that 

each s-map has a valid orientation since each s-map is the region- 

maximal line incidence map of a connected trivalent rectangular 

shape of type {b,c}. Reversing the directions on all edges in S
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yields another valid orientation. Suppose that a subset of edges 

in S , forming a connected submap of S , have their directions 

reversed such that the result is another valid orientation of S.

Such a submap may be considered as the interior edges in a connected 

region whose boundary is formed by edges of S . Consider a 2k-cycle 

C in this boundary. The interior labels at vertices on C are of 

the form shown in figure 4.19. If the sum of the interior labels 

at z-vertices on C is then, since the sum of interior labels at 

X and y-vertices on C is k, equation (14) gives 2k = -£. + 4/ if 

the distinguished z-vertex lies on or outside C and equation (15) 

gives 2k = £. - 4 if the distinguished z-vertex lies inside C. Let

a submap in a validly oriented s-map whose edge directions may be

reversed be called a reversible submap. Any valid orientation of 

S can be obtained by reversing all edge directions or the edge 

directions in reversible submaps in a given valid orientation.

Suppose that S has all z-vertices of degree four, that is, 

it is the region-maximal line incidence map of a trivalent 

rectangular dissection. Consider a valid orientation of S and a 

2k-cycle, C, in the boundary of a reversible submap. If the 

distinguished z-vertex lies on C then £ = k - 2 and £ = k otherwise. 

If the former then k = 2, but no two faces of an s-map share both 

an X  and a y-vertex, thus this is impossible. Thus £ = k and

k = 4. The internal edges of a configuration of the type shown

in figure 4.20 form the only type of reversible submap in S.

Consider an s-map S with all z-vertices degree four. It is 

the region-maximal line incidence map of a trivalent rectangular 

dissection D. Consider the corresponding valid orientation of S.
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Any reversible submap corresponds to a "pinwheel" configuration of 

the type shown in figure 4.21 where D' denotes a trivalent rectangular 

dissection. Thus any valid orientation of S is the oriented 

region-maximal line incidence map of a trivalent rectangular 

dissection obtained from D by a sequence of operations of the type 

shown in figure 4.22 which reverses the sense of the pinwheel and 

rotates the dissection D' through an angle tt, to form ttD', or 

by rotating the whole of D through i t .  This rotation of the whole 

of D corresponds to reversing the directions on all edges in S.

The following proposition has thus been demonstrated.

2 2  Proposition 4.2. A validly oriented s-map with all z-vertices of

degree four is the oriented region-maximal line incidence map of a 

trivalent rectangular dissection.

The oriented region-maximal line incidence maps of trivalent 

rectangular dissections have been considered previously by Flemming 

(1978) in the equivalent form of wall representations. In 

Flemming (1977) the number of wall representations with n ^ 10 regions 

is given by establishing a recurrence based on the fact that each 

trivalent rectangular dissection has its 'top left corner' rectangle 

of one of the types shown in figure 4.23. Thus the number of 

validly oriented s-maps with n ^ 11 z-vertices all degree four is 

given (table 4.1). If the wall representation is considered as an 

ornamentation of the rooted maximal line adjacency map then the 

effect of the ornamentation can be gauged by comparing the number 

of validly oriented s-maps with n z-vertices and the number of 

rooted quadrangulations of a quadrilaternal with n internal 

quadrangular faces (table 4.2). The effect of the ornamentation
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is seen to be small for n < 9 because there are few reversible 

submaps.

The generalization of proposition 4.2 for validly oriented 

s-maps is now stated and proved using the result of proposition 4.2,

Proposition 4.3. A validly oriented s-map is the oriented region- 

maximal line incidence map of a connected trivalent rectangular 

shape.

Proof. Consider the validly oriented s-maps with |z| = m, suppose 

that the proposition holds for all m + 2 <  |x| + |y| < n. Let 

C 2  S(n+1) be a validly oriented s-map with |x| + |y| = n + 1. At

least one of the configurations in figure 4.24 (up to interchange 

of X  and y labels) occurs in S(n+1). If one of the operations in 

figure 4.25 is applied to S(n+1), it yields an oriented map with 

|z| = m and jx| + [Y | = n. It is validly oriented. By applying 

equation (14) or (15) no two faces share both an x and a y-vertex 

and the map is an s-map. Thus by induction it is the oriented 

region-maximal line incidence map of a connected trivalent 

rectangular shape of type {b,c}. The operations in figure 4.26 

(corresponding to those in figure 4.25) on this shape construct 

a connected trivalent rectangular shape whose region-maximal line 

incidence map is S(n+1). To complete the induction each validly 

oriented s-map with |x| + |Y| = m + 2 is the oriented region-

maximal line incidence map of a trivalent rectangular dissection 

(proposition 4.2) .

Consider a validly oriented s-map and specify positive 

numbers on the directed edges such that the sums on indirected and
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outdirected (x,z) edges (and (y,z) edges) are equal at each vertex. 

These ornamented s-maps specify rectangular shapes completely, 

where the numbers correspond to dimensions, in the sense given 

below.

Consider a validly oriented s-map S, with vertices labelled 

1,2, ..., n, (x,z) edges labelled 1,2, n-2 and (y,z) edges

labelled 1,2, ..., n-2. Let U = {u_^} and V = {v^^} , 1 < i < n, 

l < j < n - 2 ,  be matrices defined by

~ +1 (“D  if the (x,z) edge j is indirected (outdirected 

at the vertix i,

2 2  “ O otherwise,

with v^j defined similarly. Suppose there are positive numbers

2  and y on the (x,z) edge j and the (y,z) edge j, l < j < n - l .: J • J
The conditions for zero sums at each vertex are expressed by the

equations
A  *  A  *x U  = 0  y V = O (16)

. A  A  A  A  A A A  Awhere X - (x^, x^, ..., x^_^) and y = (y^, yg, ..., y^_^), and 
* *

U , V are the transpose matrices of u and V, respectively.

In order to see how the numbers and ŷ  determine dimensioned

2 2  rectangular shapes further numbers are derived on the x and y-

vertices. Let the faces of S be labelled 1,2, ..., n - 2 and be 

given a counterclockwise orientation. Let A = {a.j} and B = {b..}

1 ^ i ^ n - 2, 1 ^ i ^ n -  2 be matrices where

a^j = +1(-1) if the (x,z) edge j is positively (negatively 

in the face i,

= O otherwise,

and with b^^ defined similarly. Let the x and y-vertices be
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labelled 1,2, ..., p and 1,2, ..., q respectively. Let C = {c..},

1 — i — n — 2, 1 < j < p , and D = {d..}, 1 ^ i < n — 2, 1 < j < q13
be matrices defined by

= +1 if the x-vertex j is in face i 

= 0 otherwise

and the d^^ defined similarly. Numbers x =(x^, x^, ...,x^) and 

y = (y^f '̂ 2' *'*' up to an arbitrary constant, can be assigned

to the X and y-vertices according to the equations
*  A  *  Ay D A = x  x C B = y .  (17)

A rectangular shape can be constructed from the numbersx and 

2 2  y. the X and y-vertices of S . Consider the x-vertex k together

with the y-vertices i and j as shown in figure 4.27. This represents 

a line segment with endpoints (y^,x^) and (y^,x^). The y-vertices 

are considered similarly. The line segment corresponding to the 

x-vertex k has its endpoints on the line segments corresponding to 

y-vertices i and j . The shape composed of these line segments is 

a connected rectangular shape of type {b,c}. However, the line 

segments are not necessarily maximal lines. The line segment 

corresponding to the x-vertex k is not a maximal line if and only

o if the configuration in figure 4.28 occurs where x = x .k m
Similarly for the y-vertices. If each x and y-vertex corresponds 

to a maximal line then the corresponding rectangular shape is 

trivalent and S is its oriented region—maximal line incidence map.

Consider the sets {x^, x^, ..., x^} and {y^, y^ , ..., y_}

consisting of the components of x and y. If x. = x then the line_  __ 1 ]
segments corresponding the the x-vertices i and j are aligned.

The alignment of two line segments which form part of a single

117



maximal line is a particular case of an alignment. Note that if

the x-vertices i and j are joined by an (x,z) directed path from

i to j (j to i) then x . >  x. (x. > x.). If the sets {x , x , ..., x }1 3 3 ^ -L Z p
and {y^, y^ , ..., y^} consist of m and £ distinct numbers 

respectively, then the corresponding shape is a connected minimal 

(£,m) rectangular shape. If £ = q and m = p then it is a trivalent, 

non-aligned, minimal (£,m) rectangular shape.

Consider a validly oriented s-map with all z-vertices degree 

four. It is the oriented region-maximal line incidence map of a 

trivalent rectangular dissection. Consider the oriented map 

2 2  obtained by removing y-vertices and contracting (x,z) directed

edges. The result is called the oriented x-network of the dissection. 

The oriented y-network is defined similarly. The oriented x and 

y-networks are used by Brooks et al (1940) to examine the dissection 

of rectangles into squares. The underlying maps are the x and 

y-network representations, respectively with the directed edges 

corresponding to the distinguished z-vertex as root edge. Note 

that the oriented x and y-networks of a trivalent rectangular 

dissection each define the validly oriented s-map.

2 2  Consider a 2-vertex connected rooted plane map M with edges

labelled 1,2, . . . , p + l ,  where p + 1 is the root edge. Consider 

an assignment of directions to the non-root edges together with 

pairs of non-zero numbers (a^,b^) l ^ i < p + l  such that the sum 

of the a^ on indirected and outdirected edges at each vertex are 

equal, and the sum of the b^, taken (according to a given direction 

of traversal) around a face is zero. Also let the directed root 

edge (v,w) be the only outdirected edge at v and the only indirected 

edge at w. These are the Kirchhoff laws and the result is called
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a Kirchhoff chain on M. If the directions are chosen such that

the numbers {a., a_, a , a .} and {b_,b_, b , -b1 z p p+i 1 Z p p+i

are positive, then a K-orientation on M is defined.

In a K-orientation each directed circuit contains the root

edge. Also if the vertices are labelled according to figure 4.29

there are precisely two "1" labels at each vertex and precisely

two "0" labels around the interior of each face. Consider the

rooted dual of M with directions and number pairs assigned to

the edges as shown in figure 4.30. They form the dual Kirchhoff

chain on M*. The derived map of M with (W(F), W(E)) edges

removed and directions assigned to the edges according to the
*K-orientations on M and M , together with W(V), W(F) and W(E)

vertices labelled x,y and z, respectively, is a validly oriented
*s-map. The K-orientations on M and M are the oriented x and y-

networks. If the numbers (â  , a_, .. . ,a ,) and (b. ,b^, . .. ,-b )1 z p+i 1 - Z p+1
are assigned to the (x,z) and (y,z) edges respectively in this 

validly oriented s-map then equation (16) is satisfied and a 

rectangular dissection is specified.

To summarize, each K-orientation of a 2-vertex connected 

rooted plane map is the oriented x or y-network of a trivalent 

rectangular dissection, and conversely. Each Kirchhoff chain 

specifies a rectangular dissection completely.

For a given 2-vertex connected rooted plane map the freedom 

to give K-orientations corresponds to the freedom to give valid 

orientations to the s-maps which have all z-vertices degree four. 

Thus given a K-orientation every other K-orientation can be derived
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by reversing directions on the internal edges of configurations of 

the type shown in figure 4.31. They are the embedded Wheatstone 

Bridges (Duffin 1965) and correspond to the pinwheel configurations 

in the corresponding rectangular dissections (see figure 4.21).

4.4.4 Region adjacency

Consider a validly oriented s-map S . Construct a plane map T 

from S in the following way. Insert diagonals in the faces 

according to the scheme in figure 4.32. The diagonals are labelled 

X or y. Remove the x and y-vertices. The faces in the resulting 

map which correspondto x-vertices (y-vertices) have exactly two 

2 2  x-edges (y-edges) in their boundaries. Triangulate the faces

corresponding to x-vertices (y-vertices) , which have degree 

greater than three, using x-edges (y-edges) such that no triangular 

face has all x-edges or all y-edges in its boundary (figure 4.33) . 

Also replace the digon faces which have both boundary edges with 

the same label by a single edge with that label. Finally, expand 

z* according to the scheme in figure 4.34 and let the new face be 

the distinguished face of T. Plane maps constructed in this way 

from validly oriented s-maps are called t-maps.

o T is the region adjacency map of a connected trivalent 

rectangular shape (figure 4.35) whose validly oriented region- 

maximal line incidence map is S. The external region is considered 

to be divided into subregions at the corners of the shape with 

3tt/2 external angle. The x and y-edges represent adjacency at 

"horizontal" and "vertical" line segments. The different t-maps, 

derivable, by the above construction, from a given validly 

oriented s-map, S, correspond to the freedom to order the maximal 

lines adjacent to a given maximal line in the connected trivalent
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rectangular shapes whose oriented region-maximal line incidence maps 

are S .

Finally consider the region adjacency maps of the generalized 

trivalent rectangular dissections. These are the t-maps derived 

from the validly oriented s-maps with all non-distinguished vertices 

degree four. These t-maps are validly coloured simple [r,s], 

r > 1, s > 4, triangulations (see section 3.4). The converse holds 

by proposition 3.2.

Proposition 4.4. Each validly coloured simple [r,s], r > 1, s > 4, 

triangulation is the region adjacency map of a generalized trivalent 

rectangular dissection.

4.4.5 Conclusion

The representations developed in this section have been used 

in various approaches to floor plan design based on rectangular 

shapes. Attention has been largely restricted to trivalent 

rectangular dissections. The region adjacency representation 

forms the basis of Grason's thesis (1970) on the automatic gener

ation of floor plans. A partial region adjacency map is completed 

and dimension constraints satisfied. The region adjacency 

representation is also used extensively by Mitchell, Steadman and 

Liggett (1976) in their work on small rectangular plans. The 

network representation is used by Teague (1968) who generalizes it 

to represent configurations of rectangular parallelepipeds. Finally, 

the oriented region-maximal line representation is used by Flemming 

(1978) where it is called the wall representation.

The representations considered in section 4.4 show how to
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consider rectangular shapes at various level of detail. Each 

representation considers different elements and relations between 

them. The representations are considered as ornamentations of 

the maximal line adjacency maps. This demonstrates the connections 

between the representations. In the ornamentation of numbering 

the (x,z) and (y,z) edges in the oriented region-maximal line 

incidence maps the full description of the rectangular shapes is 

recovered. In a sense the inverse of the original representation 

has been constructed.
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FIGURE 4.1 A [6,4] rectangulation with different alignments
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FIGURE 4.2 Construction of (&,m) rectangular shapes.
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FIGURE 4.3 A marked (2,m) rectangular grating.
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FIGURE 4.4 The rules to construct rectangular shapes.
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FIGURE 4.5 A marked (_̂ ,m) rectangular grating
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O
FIGURE 4.6 Rectangular shapes of types {d,i}, {e,i} and {f,i}

{ d . i } < e,i } { f . i }

FIGURE 4.7 Erasing rules for rectangular shapes of types 
{d,i}, {e,i} and {f ,i}.

125



o

o

FIGURE 4.8 Maximal line adjacency maps.
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FIGURE 4.9 Construction of a connected trivalent rectangular 
shape whose maximal line adjacency maps is Q(n+1).
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FIGURE 4.10 Splitting an (x,y)-edge in a rooted z-map, T^, 
and inserting a 3-coloured rooted triangular map, T^.
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(iv)

FIGURE 4.11 (i) A trivalent rectangular dissection, (ii)
the corresponding rooted q-map, (iii) the rooted z-map, (iv) 
the x-network and (v) the y-network.
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FIGURE 4.12 Addition of rectangular dissections in terms 
of the maximal line adjacency maps: (i) quadrangulation
of the external face and (ii) quadrangulation of an internal 
face.
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FIGURE 4.13 Addition of rectangular dissections in terms 
of the x-networks: an operation (i) at the root edge and
(ii) at a non-root edge.
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FIGURE 4.14 (i) A trivalent rectangular dissection, (ii)
the region-maximal line incidence map and (iii) the oriented 
region-maximal line incidence map.
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FIGURE 4.15 Labels in the faces of an oriented s-map
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FIGURE 4.16 Possible faces in a validly oriented s-map 
and the associated labellings.
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2 z.

FIGURE 4.17 Faces in an oriented region-maximal line 
incidence map and corresponding intersections of maximal 
lines.
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FIGURE 4.18 Configuration in S,

o x.y

FIGURE 4.19 Interior labels at vertices on the boundary 
of a reversible submap.

o
y

X

FIGURE 4.20 Reversible submap in a validly oriented s-map 
with all z-vertices of degree four.
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FIGURE 4.21 Pinwheel configuration,

O
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FIGURE 4.22 Operations on a rectangular dissection which 
correspond to reversing the edge directions in a reversible 
submap.
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FIGURE 4.23 "Top left corner" rectangle in a rectangular 
dissection.
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FIGURE 4.24 Configurations in S(n+1)
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FIGURE 4.25 Identification of vertices in S(n+1).

139



1̂ “^2

la)

O 15)

le)

"3
2̂

z1

O
Id)

3̂
2̂ \

V^2

2 z.

le) V ' 2

FIGURE 4.26 Construction of a connected trivalent rectangular 
shape whose oriented region-maximal line incidence map is 
S(n+1).
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FIGURE 4.27 The x-vertex k, whose corresponding line 
segment has endpoints (Yj,x^).

FIGURE 4.28 The x-vertices k and m whose corresponding line 
segments are part of a single maximal line.
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FIGURE 4.29 Labels at the vertices in a k-orientation.
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FIGURE 4.30 Dual Kirchhoff chain
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FIGURE 4.31 Embedded Wheatstone bridges.
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FIGURE 4.32 Diagonals in faces of S.
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o FIGURE 4.33 Triangulation of faces formed by diagonals
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FIGURE 4.34 Expansion of z* to form distinguished face.
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FIGURE 4.35 Region adjacency map.
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n 2 3 4 5 6 7 8 9 10 11

1 2 6 22 92 422 2074 10 754 58 202 326 240

TABLE 4.1 Validly oriented s-maps with n ^ 11 z-vertices, 
ail degree four.

n 2 3 4 5 6 7 8 9 10 12

1 2 6 22 91 408 1938 9614 49 335 260 130

TABLE 4.2 Rooted quadrangulations of a quadrilateral with 
n < 11 quadrangular faces.
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CHAPTER 5 

COPLANAR KINEMATIC CHAINS

5.1 Introduction

A kinematic chain is a collection of rigid bodies whose mutual 

connections, if any, are the constraints on their motion. Represen

tations are developed for kinematic chains in terms of the incidences 

(or connections) between the links (or rigid bodies) composing the 

chain. Each representation corresponds to many geometric 

realizations, obtained by specifying the metrical properties of the 

links and their connections. This investigation is mostly concerned 

with the incidence patterns among the links.

The incidence patterns broadly correspond to the "kinematic 

structure" described in Buchsbaum and Freudenstein (1970) who argue 

there that "The separation of kinematic structure from functional 

considerations can be useful in the conceptual stages of mechanical 

design, in surveying potentially useful classes of mechanisms, and 

in clarifying structural similarities between functionally different 

mechanical embodiments."

o Reuleaux (1876) distinguished six lower kinematic pairs, 

namely the screw, revolute, prismatic, cylindrical, spherical and 

planar pairs, which all possess surface contact between their two 

component links. These are some of the possible types of incidence 

between links in a kinematic chain. Attention will be largely 

restricted to these lower pairs although consideration will be 

given to pairs which are effectively constructed from collections 

of these lower pairs forming kinematic pairs in their own right.

For example two links may be connected via two revolutes and an
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intermediary link (figure 5.1), which can be considered as a kinematic 

pairing of the two links.

A coplanar kinematic chain (KC) has revolute and prismatic pairs 

with the axes of the revolute pairs parallel and the axes of the 

prismatic pairs in planes perpendicular to the axes of the revolute 

pairs. Any other type of kinematic chain will be called a spatial 

KC. In this chapter coplanar KCs are considered. Attention is 

restricted to coplanar KCs with only revolute pairs for these 

provide a relatively straightforward example to illustrate the 

representation and construction of kinematic chains in terms of the 

incidence structure of the component links.

The fundamental incidence structure of a coplanar kinematic 

chain is given by the revolute pairs. However, the revolute pairs 

are grouped by virtue of the fact that some of them may continuously 

share a common axis throughout the motion of the KC. This grouping 

of revolute pairs is essentially a geometric property of the KC 

and provides a further incidence structure. Suppose the groups 

of revolute pairs are called joints then links can be considered 

incident at joints. For example in a four cylinder internal 

combustion engine the crankshaft and connecting rods are often 

incident at four revolute pairs grouped as two joints (figure 5.2).

The links and are incident to the link at the

revolute pairs r^, r^, r^ and r^, respectively. The revolute 

pairs {r^,r^} and {r^^r^} form two joints j^ and j^, say. The 

links are incident in pairs at j^ and the links

are incident in pairs at j^.

A coplanar KC is described by the links, revolute pairs and
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the groups of revolute pairs which form joints. The incidence 

structure between links at joints is derived. However, a joint 

may also be specified by links which are incident at the joint.

Thus an equivalent description of a coplanar KC can be given which 

gives the two incidence structures, of links at revolute pairs and 

of links at joints, explicitly. These two descriptions are 

investigated in the next section.

5.2 Coplanar KCs with only revolute pairs

A set of revolute pairs continuously sharing a common axis, 

which is maximal in the sense that no other revolute pairs share 

this axis, forms a joint. A joint may also be represented by the 

links in the revolute pairs forming the joint. A joint represents 

a geometric condition on a set of revolute pairs, namely that they 

continuously share a common axis. The incidence patterns of links 

determined by revolute pairs are augmented by the grouping of revolute 

pairs to form joints. It is these extended incidence patterns 

which will be investigated.

The extended incidence patterns may be'described in essentially 

two ways. In the first description (the (L,R,J) description) the 

joints are considered as groups of revolute pairs. In the second 

description (the (L,J,R) description) joints are considered as 

collections of links and revolute pairs are pairings of links in 

the joints. The conditions on the collection of revolute pairs 

forming a joint in the (L,R,J) description are similar to the 

conditions on the pairing of links in a joint in the (L,J,R) 

description. The (L,R,J) description considers links and revolute 

pairs as primary elements and the specific grouping of revolute
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pairs into joints as an ornamentation. The (L,J,R) descriptions 

considers links and joints as the primary elements and the specific 

pairing of links in a joint into revolute pairs as an ornamentation.

5.2.1 The (LfRfJ) description

A coplanar KC with only revolute pairs is an ordered triple 

(L,R,J) of links L, revolute pairs R Ç (L) and joints J £ ̂ (R) 

such that if L(j) = {Z e L: Z £■ r £ j for some r £ r}, j £ J and 

J(Z) = {j £ J: Z £ L(j)}, Z £ L then 

1) .Uj j = R/ n j^ = (f) for all e J,
3

2) .j J{Z^) n J(Z^) I < 1 for all Z^ 9̂ Z^ e L,

3) the graphs (L(j), j), are trees for all j e J.

The ordered pair (L,R) is a graph with vertices L, and edges R, 

which represents the incidence between links at revolute pairs.

The revolute pairs which constitute a joint j £ J induce a subgraph 

(L(j), j) of (L,R). In practice it is possible that the graphs 

(L(j), j), j € J, are not trees, although they must be connected.

A tree represents the minimum pairing between links at a joint.

In the example shown in figure 5.2, L = {Z^fZ^/Z^rZ^fZ^/Z^}, 

R={{Z^,Z^), (ZgfZg), iZ^fZ^), iZ^,Z^), iZ^,Z^)} = ,

and J = {(r^,r^), (r^/r^), (r^)} = {ii/]2'i3^' links incident to

the joints are L(j^) = iZ^,Z^,Z^,}, Lfjg) ='{Z^,Z^,Z^} and 

L(jg) = {£^,£g}. The joints at which the links are incident to 

other links are J(f^) = {j^}/ J (Z^) = {jg}, = {j ,̂}'

JiZ^) = {j^}. J(fg) = = {jg}. The graphs

(L(j^),j^), (L(j2) a n d  (L(j2)/j3) are subgraphs of (L,R) and 

are shown in figure 5.3.
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There are two further points to note about the coplanar KCs 

for which the above description applies. First, they include 

collections of links whose graphs (L,R) are not connected, that is, 

collections of links composed of unconnected subcollections.

Second, they exclude collections of links in which two links are 

incident at two distinct joints. Such pairs of links can have no 

relative motion.

The links incident at a joint j € J are L(j) and the joints

at which a link £ e L is incident to other links are J {£). Let

d (Z) = IJ(£) I be the degree of a link Z e L and d(j) = |L(j)| be 

the degree of a joint j e J. The pair degree of a link £ e L is

I {r e R : Z e r } | = d * (£) .

If (L,R,J) is a coplanar KC, then the triple (L,f,J) where 

f : J (L) is a function defined byf(j) =L(j), j e J ,  represents

the incidence of links at joints in (L,R,J). There is a dual
* * ^representation by the triple (J,f ,L) where f : L (J) is a

function defined by f (£) = J (£) , Z e L. (L,f,J) is a system and
*(J,f ,L) is its transpose (Graver and Watkins 1977). The system

*(L,f,J) is a set system. However, the transpose (J,f ,L) is a 

set system if and only if d(£) > 0  for all £ € L.

A coplanar KC (L,R,J) can be represented by (L,f(J),R) where

f(J) = {f(j) : j £ j}. Also by condition (2) in the definition

j = {r £ R : r = f(j) Dr}, j £ J. This motivates the alternative

description of a coplanar KC.

o
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5.2.2 (L,J,R) description

A coplanar KC with only revolute pairs is a triple (L,J,R) of

links L, joints J ç ̂ (L) and revolute pairs R ç (L) such that if

J(£) = (j e J -.te j}, t e  L, and R(j) = { r e  R : r = r n j}, then

(1) R(j)= R, R(j^) n R(j^) = 4) for ail j^ ̂  j2 c J/

(2) \ J(£^) n J(l^) I < 1 for ail e L,

(3) the graphs (j,R(j)) are trees for ail j e J.

Given a coplanar KC (L,R,J) then its (L,J,R) description is

(L,f(J),R) and given a coplanar KC (L,J,R) then its (L,R,J) description

is (L,R,R(J)) where R(J) = {R(j) : j £ J}. R(j) denotes the

revolute pairs composed of links in joint j £ J.

For a coplanar KC (L,J,R) the ordered pair (L,R) is a graph 

which represents the incidence between links at revolute pairs. The 

links in a joint are incident at that joint. The joints at which

a link £ £ L are incident to other links are J (£). The ordered

pair (L,J) is a set system which represents the incidence between 

links at joints. The function is the inclusion function. The 

transpose system is denoted by (J,L). This is a set system if 

and only if d(£) > O for all £ £ L.

In the example shown in figure 5.2 the (L,J,R) description

has L , J = {(£^f£^,£^), f (£^,£g)}

= and R = {(£^,£g), (£2 ,£g),

= {r^/rg/r^fr^fr^}. The joints at which the links are incident 

to other links are J(£^) = {j^}/ ^(£2) = {ĵ ,}, ^(£3) =

J(£^) = {j^^, J(£g) = {i^yi2 'Î3  ̂ and J(£g) = ^33 -̂ The revolute
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pairs composed of links in the joints are R(j^) = Rfjg) =

{r^,r^} and R(j^) = {r^}. The graphs (j^,R(j^),

(ig'Rfjg)) are subgraphs of (L,R) and are shown in figure 5.4.

The system (L,J) is diagrammatically represented by drawing 

line segments and polygons for the elements of J in which the vertices 

represent the links incident to the corresponding joints. The 

transpose system (J,L) is diagrammatically represented by drawing 

loops for degree zero links, loops with vertex for degree one links, 

digons (or line segments) for degree two links and polygons for 

links of degree greater than two. The vertices represent the joints 

at which the corresponding links are incident to other links 

(figure 5.5).

The set of coplanar KCs may be given alternative equivalence 

relations depending on whether the incidence patterns of links at 

revolute pairs, at joints and at both revolute pairs and joints, 

are the same. These are called pair equivalence, joint equivalence 

and equivalence, respectively. Formal definitions are now given.

Two coplanar KCs (L,J,R) and are pair equivalent

if the graphs (L,R) and (L^,R^) are isomorphic. They are joint 

equivalent if there are bijections <|) : L and \jj : J ->■ such

that (j)(j) = ^(j) for all j £ J. They are equivalent if there are 

bijections : L L^, i|̂ : : J and ir : R R^ such that

(|)(r) = TT(r) for all r £ R and ^(j) = ^(j) for all j £ J (figure 5.6) . 

If two coplanar KCs are equivalent then they are both pair and 

joint equivalent, however, the converse does not hold (figure 5.7) .
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5.2.3 Coplanar KCs under joint equivalence

As noted previously the (L,J,R) description of a coplanar KC 

considers the links and joints as primary elements and the 

specification of the revolute pairs in a joint as an ornamentation. 

Coplanar KCs will be considered in this way in the following 

development, that is, they will be considered under joint equivalence 

and the specification of revolute pairs as an ornamentation of the 

representation.

Coplanar KCs under joint equivalence are specified by the set

systems (L,J) or their transpose systems (J,L), For a coplanar

KC described by K = (L,J), let its dual description be denoted by 
*K = (J,L). Two coplanar KCs K = (L,J) and K^ = (L^,J^) are

considered equivalent if there are bijections ^ : L -> and t|; : J

such that (j)(j) = ^(j) for all j 6 J. The systems K and are

isomorphic. If coplanar KCs K and K^ are equivalent denote this
* *by K = K^. Note that K - K^ if and only if K = K^ .

A sub-KC of a coplanar KC K = (L,J) induced by L^£ L is 

K[L^] = where = {j flL^ : |j nL^| > 2 ,  j eJ}. A

partial KC of K =(L,J) induced by £ J is K[J^3 = where

(2) = {£ £ j : j £ J^}. Note that K[j^] contains no links of degree

zero (figure 5.8).

If K^ = k [l ^] and K^ = KCbg] ^re sub-KCs of K = (L,J) then 

let K^ u Kg = k Cl ^ U Lg]. Also if K^ = K[J^] and = K[jg] are

partial KCs of K = (L,J) then let K^ U K^ = k Cj  ̂ U J^].

A coplanar KC K = (L,J) can be represented by a graph R(K), 

the representative graph, in which vertices correspond to links
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and two vertices are joined by an edge if the corresponding links 

are incident at a joint. If E(j) = {e e9g(j)}, j € J and 

E(J) = {E(j) : j £ J} then R(K) = (L,E(J)) (figure 5.9).

If two coplanar KCs K = (L,J) and K^ = (L^,J^) have isomorphic 

representative graphs R(K) and R(K^) then K and K^ are not 

necessarily equivalent. For instance the coplanar KCs in figure 

5.10, shown by their (J,L) diagrams have isomorphic representative 

graphs but are not equivalent.

Suppose that R(K) and R(K^) are isomorphic under bijections 

(J) : L ->• and ip : E ^ E^ and (p does not map the sub-KCs shown in

figure 5.10 into one another, then K - K^, under the bijections 

(f) : L ->■ and \p : J where $ (j) = {t e ip(e) : e £ E(j) },

j e J.

5.2.4 Coplanar mechanisms

Some ornamentations of coplanar KCs are defined. Coplanar 

mechanisms are derived from coplanar KCs by fixing a single link.

In the definition of a coplanar KC this is represented by rooting 

or marking a single link as the fixed link. Pair equivalence, 

joint equivalence and equivalence are defined for coplanar mechanisms 

as for coplanar KCs but with suitable modifications to preserve the 

fixed link under the various bijections involved. The ornament

ation achieved by designating fixed links in a coplanar KC is 

kinematic inversion in the sense used by Reuleaux (1876)(figure 

5.11). Similar considerations apply to coplanar mechanisms with 

driven links (figure 5.12) , In coplanar mechanisms with only 

revolute pairs links are often driven by a relative rotation of a 

link at a pair, thus driven pairs arise (Davies 1968).
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5.3 Classification of coplanar KCs

Particular classes of coplanar KCs are now examined in detail. 

Three criteria for classification are used. First, the degree of 

freedom, second, the connectedness and third the planarity of the 

coplanar KCs.

5.3.1 Degree of Freedom

Consider a coplanar KC K = (L,J) with |l | = p, |j| = q ,

\{Z e li : d(Z) = i}| = p̂  ̂ and [{j e J : d(j) = i}| = q^. This 

notation is used throughout for a coplanar KC K = (L,J). The 

degree of freedom of K = (L,J) is defined by 

Q  f(K) = 3p - 2 %(i -l)q. - 3, (1)

and K is normal if f(K^) > O for all K^ = K[L^], c l .

The expression for f(K) gives, "in general" the physical degree

of freedom of the coplanar mechanisms corresponding to a normal 

coplanar KC K = (L,J), with a single fixed link. There are special 

cases which depend on the geometrical properties of the KC, for 

which the physical degree of freedom is not given by f(K). As 

Bottema (1950) remarks, "It is well known that mechanisms can be 

constructed (for which there exist certain metric relations between

(2) the bars or for which the contacts are of a certain character)

which do not obey the formulae."

A normal coplanar KC K = (L,J) is degenerate if there is a

sub-KC K^ = K[l ^], o L, such that f(K^) < f(K) < |l ^|. Otherwise

it is isokinetic (Crossley 1965). Degeneracy indicates the f (K) 

independently driven links may not be feasible for certain choices 

of the links to be driven. These issues are dealt with in more 

detail by Davies (1968).
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A coplanar KC K = (L/J) is irreducible if f(K) > O and 

f(K^) > 1 for all sub-KCs K̂  ̂= K[L^], c  l, |l^| > 2. A coplanar

KC is irreducible in the sense that no proper subset of links 

(except a single link) induces a sub-KC of degree of freedom zero. 

Such a degree of freedom zero sub-KC could be replaced by a single 

link without affecting the global properties of the motion of the 

KC. Irreducible coplanar KCs with degree of freedom zero are the 

structures without any substructures. Each normal KC can be 

derived from an irreducible KC by reversing this replacement.

Degree of freedom, normality and irreducibility are defined 

22} naturally for a coplanar KC K = (L,J,R). If K has r revolute pairs,

r^ links of pair degree i and f(K) = f then p, q, r, p^, q^, r^ and

f are related by well known formulae which are derived below. The

definitions give

IPi = 1%! = P ' (2)

= q , (3)

f = IPi - 2 - 3 = 3p - 2r - 3 . (4)

Simple counting arguments give

O liPi = = q + r , (5)

l±r^ = 2r . (6)

Equations (2) - (6) give

f = 1(3 - 2i)p^ + 2q - 3, (7)

f = 1(3 - i)p^ + 1(2 - i)q^ - 3, (8)

f = 1(3 - i)r^ - 3 , (9)

2f = 3 1(2 - i)pu + 1(4 - i)q^ - 6 . (10)
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In particular, the following inequalities are derived

f + 3 < 3p^ + 2p^ + pg , (11)

f + 3 < 3r^ + 2r^ + r^ , (12)

2f + 6 ̂ 6p^ + 3p^ + 2q^ + q^ . (13)

5.3.2 Connectedness

A link-joint path in a coplanar KC K = (L,J) is an ordered 

set of distinct links and distinct joints Z ,j ,j ,..., j , t ,
-L J. 6  6  iC jC * J-

e L, i = 1,2,. . .,k+l, and j^ e J, i = 1,2,..., k, such that

6 j , i = 1,2,..., k. If every two links of K belong to

22) a link-joint path then K is connected.

A k-joint cut in a connected coplanar KC K = (L,J) is C 

c J , |j^j = k such that K[J-J^] is not connected. A k-link cut 

is c L, |l ^| = k such that K[L-L^] is not connected. K is 

k-joint connected if there is no k'-joint cut with k' < k and is 

k-link connected if there is no k'-link cut with k' < k. Note 

that the presence of degree k links in K does not necessarily;; imply 

that K is at most k-joint connected. In particular a normal 

coplanar KC may be k-joint connected k > 3 although it necessarily 

has links of degree one or two by the inequality (11) (figure 5.13),

The definitions of joint and link connectedness can be 

extended naturally for a coplanar KC (L,J,R). Further (L,J,R) is 

k-pair connected if the graph (L,R) is k-edge connected. Also 

(L,J,R) is k-link connected if and only if the graph (L,R) is 

k-vertex connected.

The notions of connectedness can be used to refine the
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characterization of normal and irreducible KCs. First some 

definitions are given. Suppose J is a k-joint cut ino
K = (L,J) and K[j -J^] has connected components ,

i = 1,2,..., n. Also let L.* = L. U L , where L =1 1 o o
{Z : Z £ j n j_, j . 7̂ j„ e J  }, for k > 2 and L.* = L. for

L z  2. z  O 1 1
k = 1. The K[l ^*3, i = 1,2,..., n are the k-joint components 

of (figure 5.14(ii)) and a k Cl ^*] which is not a k'-joint

component, k ' < k, of J' c is a proper k-joint component of

(figure 5.14(ii)).

Proposition 5.1. A coplanar KC K = (L,J) is normal if 

C j  f(K ) > 0  for all 2-joint connected sub-KCs K = K[L ], L c L.V—  1 1 1 1

Proof. If there is a sub-KC K^ with f(K^) < O such that no 

sub-KC of K^ has this property, then K^ is either disconnected or 

has a 1-joint cut. In each case a contradiction arises and thus 

K must be normal.

Proposition 5.2. A coplanar KC K = (L,J) is irreducible if 

f(K^) > 1 for all 3-joint connected sub-KCs K^ = K[L^],

\  ^ - 2-

(2^ Proof. If there is a suh-KC = K[L^3, c L, |l |̂ > 2

with f(K^) < O such that no sub-KC of K^ has this property, then

K^ is either disconnected, has a 1-joint cut or a 2-joint cut.

The first two cases provide contradictions. Thus assume K has

a 2-joint cut. Let T^, T^, ..., T^, n > 2 be the 2-joint

components of the 2-joint cut in K . By a counting argument 
n n
I f(T ) < f( U T.) + (n-1) < f(K ) + (n-1) < n-1 

i=l i=l ^ °
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This provides a contradiction. Thus each sub-KC K^ = K[Lq ], c l ,

|l I > 2  has f(K ) > 1 .  It remains to show that f(K) > O.

Suppose £ e L is the link of smallest degree in K = (L,J).

If K^ = K[L -{£}], then f(K^) > 1 .  If d(£) > 3 then K^ has no links 

of degree zero or one and at least four links of degree two by 

inequality (11). This provides a contradiction, thus d(£) < 2.

If d(£) = 0 , 1  then the result follows immediately. If d(£) = 2, 

then f(K) = f(K^) - 1 > 0 .  Thus the proposition is proved.

5.3.3 Planarity

Finally as a third method of classification, the planarity of 

coplanar KCs is considered. A connected normal KC K = (L,J) is 

planar if there is a diagrammatic representation of (J,L) such that 

polygons, line segments and loops, representing the links, intersect 

only at their vertices (figure 5.15). This means of classification 

has a limited use for in the motion of a coplanar KC the links 

will, in general, "cross over". However, it might be of use in 

identifying a particularly simple class of coplanar KCs and for 

those in which only a small range of motion is required. Perhaps 

22) the main use is for classifying coplanar KCs with degree of freedom

zero, the structures (see section 6.5).

A face in a plane embedding of a coplanar KC is a maximal 

open set in the plane not intersecting any links. There is also 

one "infinite" face. Suppose a coplanar KC K = (L,J) has a plane 

embedding with t^ faces bounded by i links, then Euler's formula 

gives,

a - + %t_ + p = 2 . (14)
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However,

liPj, = liq^ = , (15)

and substitution in (14) gives

p + q = %(i - l)t^ + 2 . (16)

The formula for the degree of freedom together with (15) gives

f = 3p + 2q - 2 %iq^ - 3

= 3p + 2q - 2 ^it^ - 3 . (17)

Eliminating q from (16) and (17) gives

f = p - 2 It^ + 1 . (18)

5.4 Basic sets for coplanar KCs

The coplanar KCs under joint equivalence can be ornamented 

by specifying the revolute pairs between links incident at a joint. 

The coplanar KCs under joint equivalence are specified by a set 

system (L,J) or its transpose (J,L). Let A denote the set of 

connected irreducible coplanar KCs K = (L,J) and A the set of 

connected normal coplanar KCs. Also let A(p,q,f) denote the 

subset of connected irreducible coplanar KCs K = (L,J) with |l | = p,

[j| = q and f(K) = f. Let A (p,q,f) be defined similarly. The

aim of this section is to show how the elements in A and A can be 

constructed from basic sets by suitable ornamentation operations.

Consider the set B^ consisting of connected irreducible 

coplanar KCs K = (L,J), such that q^ = O, i > 3. Let B^(p,f) 

denote the subset of B^ consisting of coplanar KCs K = (L,J) with 

|l [ = p and f(K) = f. Consider the operation on the elements 

of B^ (figure 5.16), which identifies joints on a link. It 

preserves the number of links but reduces the number of joints.
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The degree of freedom is also preserved. Each element in A(p,q,f) 

can be constructed from an element in A(p, q+1, f) by applying a^. 

Thus all elements in A(p,q,f) can be constructed from B^(p,f) by a 

sequence of several operations. Note that also produces 

coplanar KCs which are not normal or not irreducible from B^(p,f). 

If B^ consists of the connected normal coplanar KCs K = (L,J) such 

that q^ = O, i > 3, then elements in A may be constructed from B^, 

using the operation a^.

The other basic set considered is B^, which consists of the 

irreducible coplanar KCs, such that pu = O, i > 3. Elements in A

can be obtained from elements in B^ by a sequence of operations

«2  ̂ which is the "inverse" of the operation a^. That is, the 

expansion of a joint of degree greater than two by increasing the

degree of one of its incident links. However, the use of as a

basic set is unsatisfactory since not all elements in A can be 

constructed in this way (figure 5.17). The set B^ and the 

operation have been used by Mruthyunjaya (1979) to produce the 

coplanar KCs in B^ with at most 10 links, although no proof is 

given of the general application of this method. Manolescu (1979) 

indicates that a subset of B^, namely those with a dyad, and the 

operation might be used to construct B^. Again no proof is 

given, but the question is raised as to whether there is a subset 

of B^ from which B^ may be derived. The set B^ is more 

interesting for if sub-KCs of degree of freedom zero are replaced 

by single links then all elements in A may be obtained.

Certain subsets of B^ and B^ may be considered in their own 

right as basic sets. Let B^(k,k'), i = 1,2, denote the subsets of
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whose elements are k-joint connected and k'-link connected.

Note that for B^(k,k'), k ^ k' and for B^Ck^k'), k ^ k'. Let 

B^(k,k'; p,f), i = 1,2, denote the corresponding elements with p 

links and degree of freedom f. The subsets B^(k,k'; p,f), i = 1,2, 

are defined similarly. The operation preserves link connect

edness and possibly reduces joint connectedness of elements in A, 

thus B^(k,k'; p,f) may be used as a basic set for constructing 

elements in A which are k-joint connected and k'-link connected.

The elements in B^(k,k') and B^(k,k'), i = 1,2, may have 

2 ^  links of degree one. Let C\(k,k') and C^(k,k'), i = 1,2, denote

the corresponding subsets without links of degree one. The 

subsets C\(k,k'); p,f) and C^(k,k'; p,f), i = 1,2, are also defined. 

Note that B^(k,2) = C^(k,2) and an element in B^ is at most 2-link 

connected, thus B^(k,k') is empty for k' > 3. The set C^(k,k'; p,f) 

can be used as a basic set for constructing elements in A which 

are k-joint connected, k'-link connected, have p links all degree 

greater than one, and degree of freedom f.

o 5.5 Conclusion

The irreducible coplanar KCs in C^(2,l) correspond to the 

coplanar KCs, with simple joints and multiple links considered by 

many authors in their work on the structural analysis of kinematic 

chains (Crossley 1965, Davies and Crossley 1966, Dobrjanskyj and 

Freudenstein 1967, Woo 1967). The C (2,2) correspond to the 

coplanar KCs with simple links and multiple joints. These have 

been considered in somewhat less detail (Mruthyunjaya 1979). 

However, both C^(2,l) and Cg(2,2) have been used by Manolescu 

(1973, 1979) who denotes them by KCsj and KCmjs£, respectively.
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It has been noted previously that the presence of links of 

degree k in a connected coplanar KC K does not necessarily imply 

that K is at most k-joint connected. This may be considered as 

a shortcoming in the definition of joint connectedness. The 

point of view taken here is that the joint cuts corresponding to 

single links are, in some sense, trivial. However, by considering 

an alternative definition of joint connectedness these 'trivial' 

joint cuts may be incorporated.

Suppose that a joint cut in a connected coplanar KC 

K = (L,J) is defined as a subset of joints ç j, such that the 

22) KC (L, J-J^) is not connected. The single links now correspond

to joint cuts. In particular if K has a link of degree one, then 

the corresponding joint is a 1-joint cut. A corresponding notion 

of joint connectedness can be defined which is stronger than 

the original, in the sense that k-joint connectedness in the new 

definition implies k-joint connectedness in the original definition. 

The development of the basic sets is somewhat simplified since it 

is not necessary to exclude the KCs with links of degree one as 

trivial ornamentations. However, set against this simplification 

is the fact that under this definition coplanar KCs can be at 

most 2-joint connected, although it must be admitted that in the 

following development only 1 and 2-joint connected coplanar KCs 

are considered. It seems that it is the province of future work 

to investigate the relative merits of the two approaches and to 

assess the advantages of allowing joint-connectedness greater 

than two. It certainly seems that there are advantages for 

the coplanar KCs in . Both definitions have their place in the
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classification of coplanar KCs, and no doubt both could be used 

side by side. Future work on these problems would also include 

a more detailed examination of k-joint components, their 

definition and relevance to the analysis and synthesis of 

coplanar KCs.

o

o
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FIGURE 5.1 Two links connected by intermediary link.

o

FIGURE 5.2 Schematic diagram of crankshaft and connecting 
rods in a four cylinder engine.

o 1

's

'? *3

'2\ /'3

FIGURE 5.3 The graph (L,R) for the kinematic chain in figure
5.2 and subgraphs corresponding to joints in the (L,R,J) 
description.
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Ijg.RU,!)

FIGURE 5.4 The subgraphs of the graph (L,R) corresponding 
to joints in the (L,J,R) description for the kinematic chain 
in figure 5.2.

o

o
II

FIGURE 5.5 Diagrammatic representation of coplanar KCs:
(i) the systems (L,J) and (ii) the corresponding dual 
systems (J,L).
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(i) (ii)

O
R = {(1,2), (1,3), (2,4), (3,4), (2,5), (2,7), (3,6), (3,8),

(5,6), (7,8)}

FIGURE 5.5 Pair equivalent coplanar KCs which are not 
joint equivalent.

O
(i) lii)

R = {(1,2), (2,3), (3,4), (4,1) R = {(1 ,2), (2,3), (3,4), (4,1)
(4,7), (3,6), (3,5)} (3,7), (3,6), (2,5)}

FIGURE 5.7 Pair equivalent and joint equivalent coplanar KCs 
which are not equivalent.
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5

L=lU3l^W) L  = | U ^ Z . 5 e 7 ) 1-1 = U3.^)
(i)

O 6

J=(U3A5,6.7) Jl= (1.%3,45.6,7)
(ii)

Ĵ  = (2,3,47)

FIGURE 5.8 (i) Sub-KCs and (ii) partial KCs.

o A

FIGURE 5.9 A coplanar KC and its representative graph.
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FIGURE 5.10 Non-equivalent coplanar KCs with isomorphic 
representative graphs.

o
FIGURE 5.11 Kinematic inversions. The link marked * is 
fixed.

o

FIGURE 5.12 Driven versions of a coplanar KC. The link 
marked * is fixed and the link marked A is driven.
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Ii)

o
FIGURE 5.13 (i) 2-joint connected and (ii) 3-joint connected
coplanar KCs.

o

(I) (ii)

FIGURE 5.14 (i) 2-joint components and (ii) proper 2-joint
components.
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Ii) 11

FIGURE 5.15 (i) A coplanar KC which is not planar and
(ii) a plane embedding of a coplanar KC which is planar

o
ai

FIGURE 5.16 The operation aj.

o

FIGURE 5.17 A coplanar KC not constructible from an element 
of B2 by an.
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CHAPTER 6 

BASIC COPLANAR KINEMATIC CHAINS

6.1 Representation of C^(2,l) and C^(2,2)

The set system (L,J) for a coplanar KC in is a simple graph, 

let C^(2,2) and C^(2,l) denote the set systems (L,J) of the 

corresponding coplanar KCs. For a graph G = (V,E) in C^

f(V^) = 3|v^| - 2 |e |̂ - 3 (1)

is defined for G[v^], ç v and is the degree of freedom of the 

sub-KC induced by the links corresponding to V^. Two vertices 

joined by an edge has f = 1 and a single vertex has f = O.

^2) A simple graph G = (V,E) is in C^(2,l; p,f) if and only if

(1) |v| = p, |e| = V 2 (3p - f - 3) ,

(2) f(V^) > 1 for all subgraphs g Cv ^], c v , |v ^|> 2.

(3) G is 2-edge connected.

A simple graph G = (V,E) is in C^(2,2; p,f) if and only if (1) and 

(2) are satisfied, together with

(4) G is 2-vertex connected.

The graphs in C^(2,l; p,f) have p ^ f + 3 and the lower bound is 

attained for the cycle graph with f + 3 vertices. Also 

(2) C^(2,l; p,0) = C^(2,2; p,0) and C^(2,l; p,l) = C^(2,2; p,l) .

The graphs in C^(2,l) and C^(2,2) are defined similarly but 

with condition (2) replaced by 

(2) f(V^) ^ O for all subgraphs G[V^], ç V.

6 .2 Construction of C^(2,l) and C^(2,2)

The elements in C^(2,l) and C^(2,2) can be constructed in 

various ways. Four methods will be examined in greater or lesser
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detail. Two methods, namely construction according to degree 

sequences and using Assur groups are reviewed. Two other methods 

are presented which both seem new. First, the construction by 

the addition of suspended chains and cycles, and second the 

construction by using subgraph replacement operations.

6.2.1 Construction by degree sequence

This approach is used by many authors, for example Crossley 

(1964), Davies and Crossley (1966), Dobrjanskyj and Freudenstein 

(1967) and Woo (1967). The method consists in finding the solutions 

^ 2 '^3 '"'"' the following equations, for given f and p, 

f = 3 IPi - liPj, : 3 = %(3 - i )p^ - 3 ,

IPi = P , (2)
^ip^ = O mod 2 .

Graphs with p^ vertices of degree i are constructed and tested to 

ensure that conditions (1), (2) and (3) or (4) are satisfied. A 

modification sometimes employed (Woo 1967) divides the construction 

into classes corresponding to the number of degree two vertices 

required. Graphs are constructed without degree two vertices 

and the appropriate number of such vertices are added by subdividing 

(2) edges. This operation is effected without examining all edges by

using the equivalence of edges under the automorphism group of 

the graph. This method is also used in Davies and Crossley (1966), 

where it is expressed in terms of Franke's condensed notation for 

plane linkages.

There are a number of standard results which might be relevant 

to these procedures for constructing graphs in C^(2,l) and C^(2,2). 

Suppose that a solution p ^ / p^,... , to the equations (2) gives
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rise to a potential degree sequence d^ > d_ > ...> d with1 2  p
P
I d even. This is the degree sequence of a 2-edge connected 

k=l
graph (Edmonds 1964) if and only if

V ?2 d. < k(k - 1) + 2 min(k,d.) ,
i=l ^ i=k+l ^

d^ ^ 2 , k = 1 ,2 , — , p .
(3)

It is the degree sequence of a 2-connected graph if and only if, 

in addition to (3),

< 1/2 (p + 1 - f) . (4)

The inequality (4) implies that the maximum degree of a vertex 

in a graph in C^(2,2; p,f) is ^/2 (p + 1 - f). There are graphs in 

C^(2,2; p,f) with a vertex of degree I/2 (p + 1 - f) (figure 6.1).

Wang and Kleitman (1973) give algorithms to construct n- 

connected graphs with prescribed degree sequences and it is possible 

that use can be made of these algorithms in the degree sequence 

approach to constructing graphs in C^(2,2; p,f).

6.2.2 Construction by suspended chain and cycle addition

An extension of a result of Whitney (1932) provides a method 

(2) of construction for graphs in C^(2,2). This result states that

any 2-connected graph can be constructed from a cycle by a 

sequence of additions of suspended chains or single edges. A

suspended chain of length k in a simple graph is a path with 

k interior vertices each of degree two and distinct endpoints of 

degree greater than two. Also, if a simple graph G = (V,E) has a 

suspended chain with interior vertices S then G is said to be 

obtained from G-S by the addition of the suspended chain. There
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is a stronger result for graphs in C^(2,2) based upon the following 

proposition.

Proposition 6.1. If G e C^(2,2), G not a cycle, then there is 

a suspended chain with interior vertices S such that G - S £ C^(2,2)

Proof. Let a suspended chain be denoted by its interior vertices.

Suppose that is a suspended chain in G, which exists by 

inequality (11) of section 5.3. Assume that G - i C^(2,2) for 

otherwise the proposition holds immediately. Thus G - S^ has two 

blocks, not single edges, with vertex sets and which each 

2 ^  contain precisely one cut vertex in G - (figure 6.2). One of

the following holds for :

(1) G[V^] is a cycle,

(2) G[V^] has a suspended chain S such that there is a suspended

chain in G, £ S, (figure 6.3). This follows since

G[V^] € C^(2,2) and by inequality (11) of section 5.3.

If (1) then there is a suspended chain S with vertices in 

such that G - S  £ C^(2,2), and the proposition holds. If (2) then 

either G - £ C^(2,2) and the proposition holds, or G - has at

(2 ) least one block, not a single edge, c which contains precisely

one cut vertex in G - S^. The argument can be repeated for in 

place of V^. However, it cannot be repeated indefinitely, thus 

the required suspended chain exists and the proposition holds.
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Corollary 5.1.1. If G £ C^(2,2), G not a cycle, then G contains 

two suspended chains with interior vertices such that

G-Si £ C (2,2), i = 1,2.

Proof. The result is a corollary of the proof of proposition 6.1, 

since G contains at least two suspended chains.

Corollary 6.1.2. If G £ C^(2,2), G not a cycle, then G can be 

constructed from a cycle by a sequence of additions of suspended 

chains (figure 6.4 (i)).

A suspended cycle of length k in a simple graph is a cycle 

with k + 1 vertices of which exactly k are degree two. There is 

a result similar to corollary 6.1.1 for graphs in C^(2,l) given in 

the following proposition.

Proposition 6.2. If G e C^(2,l), G not a cycle, then G contains 

two suspended chains or cycles with interior vertices f such 

that G-S^ £ C (2,1), i = 1,2.

Proof. It may be assumed that G i C^(2,2). Let G contain blocks 

with vertices B(l), B(2), ..., B(k) such that the B(i), i = 1,2, .. . ,k 

contain precisely one cut vertex in G. Since k > 2, corollary 

6 .1.1 provides the result.

Corollary 6.2.1. If G £ C^(2,l), G not a cycle, then G can be 

constructed from a cycle by a sequence of suspended chain and 

suspended cycle additions.
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Suppose that the construction of a graph in C^(2,2; p,f) from an 

n-cycle requires a^ additions of suspended chains of length i, then

p = n + ^ia_ , (5)

1/ 2 - f - 3) = n + ^(i + 1)a^ . (6)

(5) and (6): give

la. = 1/2 (p - £ - 3) . (7)

Therefore given p and f, partitions of I/2 (p - f - 3) correspond to 

possible a^. The order in which the suspended chains can be added 

is constrained to ensure that the irreducibility condition is not 

necessarily violated. The particular vertices at which the 

suspended chains are added can also be examined. The construction 

of the graph in figure 6.4(i) has a^ = 2, = 2 and I/2 (p - f - 3) = 4.

An alternative construction is shown in figure 6.4(ii) with

a^ = 1, a^ = 2, a^ = 1.

Similar considerations apply to constructing a graph in 

C^(2,l; p,f) from an n-cycle by a^ and b^ additions of suspended 

chains and cycles, respectively, of length i. In this case

p = n + ^i(a_ + b^) , (8)

l/2 (3p - f - 3) = n + %(i + 1)(a^ + b^) . (9)

(8) and (9) give

^(a + b^) = 1/2(P - f - 3) . (10)

179



o

Figure 6.5 shows a graph in (2,2; 9,0) which can be 

constructed using both suspended chain and suspended cycle additions 

with a^ = 1, b2 = 1, b^ = 1 and - f - 3) = 3 .

6.2.3 Construction by subgraph replacement

The graphs in (2,1; p,f) are now examined in more detail. 

Properties are given which relate to subgraphs and to the distribution 

of degree two vertices.

Proposition 6.3. If G = (V,E) e C^(2,l), V^, V^, ..., c V and

G[V u V u ... u V ] has n edges not in G[V_], G[V_], ..., G[V ],m 1 z m
then

m m
f ( U V  ) = I f (V ) - % f ( V .  n V . )  + y f ( V .  n V .  n v,  )

1=1 ^ 1=1 ^ 1>] 1 ] i>j>k ^ ^

m
+ -----+ (-1)“ ^ f( n V.) - 2n . (ID-

i=l ^
Proof. Use a straightforward counting argument.

The next propositions are concerned with particular subgraphs 

of graphs in C^(2,l). If G = (V,E) e C^(2,l) let P(u,v) and

Q(u,v) denote subsets of V containing u, v e V such that f(P(u,v)) = 1, 

f(Q(u,v)) = 2  and there are no subsets of P(u,v) and Q(u,v) with 

2 ^  same properties. Figure 6.6 shows examples of the sets

P(u,v) and Q(u,v) for a graph in C^(2,l; 12,1). The subgraphs 

P(u,v) and Q(u,v) correspond to subchains connecting the links 

corresponding to u and v which allow one and two degrees of relative 

freedom, respectively, between the two links.

Proposition 6.4. If G = (V,E) e C^(2,l; p,f), u, v e V, then
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P(u,v), if it exists, is unique except when V = P^(u,v) u Pgfu/v) 

and f (V) = O.

Proof. Suppose there are P^(u,v) then proposition 6.3

with m = 2 provides a contradiction unless V = P^(u,v) u P^(u,v) 

and f(V) = O.

Proposition 6.5. If G = (V,E) e C^(2,l; p,f), u,v e V and there is 

P(u,v) {u,v} then each Q(u,v) c p(u,v) unless V = Q(u,v) u P(u,v), 

f(V) = O.

Proof. As P(u,v) 7̂ {u,v} then G[P(u,v)] contains a degree two 

vertex w f u,v. Thus there is Q(u,v) c p(u,v) - {w}. Suppose 

there is Q^(u,v) P(u,v), then f(Q^(u,v) n P(u,v)) > 3 for

otherwise definitions of P(u,v), Q(u,v) and Q^(u,v) are contradicted. 

By proposition 6.3 there is a contradiction unless V =

Qj^(u,v) u P(u,v), f(V) = O.

Proposition 6 .6 . If G = (V,E) £ C^(2,l;p,f), u, v £ V, f > 1, 

Q^(u,v) 7̂ Qgfu/v) then Q^(u,v) and QgfUfV) are unique and 

P(u,v) = Q^(u,v) U Q^{\i,v) unless (u,v) £ E(G).

Proof. Let = Q^(u,v), = Q2 (u,v). By proposition 6.3

f(Qf n Q^) + f(Q^ u Q^) ^ 4 and by definitions f(Q^ n Q ) = 3 .

Thus f(Q^ u Q^) = 1. Suppose there is = ^^(u/v) Q^(u,v),

QgfUfV) then Gg c u @2 and similarly Qj. ^ ^2  ̂^ 3 ' ^2 ^1  ̂ O3
This provides a contradiction. If (u,v) / E(G) then 

P(u,v) £ u ^2 and by proposition 6.5 equality holds.

The next propositions are concerned with the distribution

of degree two vertices in the graphs belonging to C^(2,l).
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Proposition 6.7. If G = (V,E) e C^(2,l; p,f) then each suspended

chain has length k ^ f + 1 and ^ f + 3. Also p^ = f + 3 if

and only if p^ = O, i > 4.

Proof. Follows immediately from proposition 6.3 and inequality

(11) in section 5.3.

Proposition 6.8. If G = (y,E) e C^(2,l) then d(v) < p^ for all 

V e V. Also if d(v) = p^ for some v e V then f(V) = 0  and 

d(w) < 3  for all w € V - {v}.

Proof. The result follows from the equation (8) of section 5.3, 

namely

p = f (V) + 3 + ^ 1  (i - 3)p. .
^ i >4 1

Corollary 6.8.1. If G = (V,E) e C^(2,l) has all degree two

vertices adjacent to a single vertex v £ V, then d(v) = p ^ , 

f(V) = 0  and d(w) < 3  for all w £ V - {v} (figure 6.7).

Let degree two vertices be called remote if they are not 

adjacent to a common vertex. Consider the graphs in figure 6.8, 

which have no remote degree two vertices. They are the only 

(2^ graphs in C^(2,l) with f S: 1 and no remote degree two vertices.

Consider the subgraph G-V^, of G = (V,E) e C^(2,l) where 

is the set of degree two vertices in V. Now consider the 

vertices in G of degree greater than two and adjacent to exactly 

zero, one and two vertices of degree greater than two. Denote 

these sets of vertices by V(O), V(l) and V(2) respectively.

Suppose there are s^ and c^ suspended chains and cycles, 

respectively, of length i, in G. If G is not a cycle then by 

inequality (11) of section 5.3, applied to G - V ,
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f+1
3|v(0)I + 2|v(l)I + |v(2)I > f(V) + 3 + I (2-i)s.

f+1
+ % (l-i)c. . (12)

i=l ^

Proposition 6.9. If G € C^(2,l; p,f), G not a cycle, c^ = s^ = O, 

i > 3, then there is v e V(0) u V(l) u V(2) such that if v e V(0),

d(v) < 6, if V £ V(l), d(v) < 5 and if v £ V(2) then d(v) < 4.

Proof. Suppose there is no such ,vertex then

6|V(0)I + 4|V(1)I + 2|V(2)I < 2 p^ 

which contradicts inequality (12) above.

Proposition 6.10. If G £ C^(2,l; p,f), G not a cycle, c^ = s^ = O,

i > 3, such that d(v) > 6, v £ V(0) and d(v) > 5, v £ V(l), then

there is a vertex of degree two adjacent to v^ £ V(2), d(v^) = 3 

and v^ e V(0) u V(l) u V(2) .

Proof. Suppose there are k vertices of degree three in V(2) and

there is no vertex of degree two as specified then 

6 |v(0)I + 4|v(l)I + 2(|v(2)|-k) + k < 2p - k, 

which contradicts inequality (12) above.

Propositon 6.11. If G £ C^(2,l; p,f), G not a cycle, c\ = s^ = O, 

i > 3, then there is a vertex of degree two in G adjacent to

Vf, V £ V(0) u V(l) u V(2).

Proof. Suppose there is no such vertex then 

3|v(0)I + 2|V(1)I + |v(2)I < p 

which contradicts inequality (12) above.

It seemsfeasible that the knowledge about the structure of 

graphs in C^(2,l) given in propositions 6.9, 6.10 and 6.11 may be
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used to construct these graphs by subgraph replacement operations. 

However, the number of operations required and the complexity of 

their application would seem to rule out their use. Proposition 

6.12 will give a relatively simple method of construction.

Consider the subgraph replacement operations 3^ and 3^

shown in figure 6.9. There are variants of the operations depending 

on the relative otientations of the subgraphs on right and left.

For instance 3^ has {w^,w^/W^,w^} = t^i'^2'^3'^4^ but w^ is not 

necessarily the same as v^. The operations 3^ and 3^ may also 

be considered as variants of 3^ under the identification of vertices.

Proposition 6.12. If G e C^(2,l; p,f), f > 1 then G can be 

constructed from a graph in C^(2,l; p-2, f) by the operation

^3*

Proof. Note first that the proposition does not hold for.f = O 

(see figure 6.10). If G is a graph in figure 6.8 then 3^ constructs

G. Thus assume G contains the configuration in figure 6.11, 

where "̂ 3̂ /"^2'^3 '̂ 4 distinct vertices. The degree two

vertices u^ and u^ are remote.

Let u^ and u^ belong to suspended chains or cycles and

respectively. If G-S^ or G-Sg is 1-edge separated then by proof 

of propositions 6.1 and 6.2 there is a pair of remote degree two 

vertices such that 3̂  ̂ constructs G. Thus suppose that G-S^ and 

G-Sg are in C^(2,l). If G-(S^ u S^) is 1-edge separated then 3^ 

constructs G. Thus suppose that G-(S^ u S^) e C^(2,l). If 

|s^| > 2  then 3^ constructs G; similarly for S^. Thus suppose 

that G- {u^,U2} € C^(2,l) for each pair of remote degree

two vertices.
184



o

o

If there is no Q(v^,vJ for some i j e {l,2,3,4} and

(v^,vj i E(G) then 3^ constructs G. Suppose there is a Q(v^,vJ

for ail i 7>̂ j £ {1,2,3,4}. Let = Ofv./Vg), = Q(v^,V2),

Gg = GfVg'Vg), Q4 = Q(v2 /V^),Q^ = Gfv^fV^), = Q(v^/V^) and

let Q.. = Q .  UQ., Q. = Q .  UQ .  U Q  and so on. Also let 1] 1 ] 13k 1 3 k
= Ql u Q2 u ... u Qe U {u^} u {Ug}.

If u^ £ or u^ e then 3^ constructs G. If u^ £ Q^,

1 = 2,3,4,6 , then 3^ constructs G unless there is ^ Q^,

u^ i similarly for u^. Thus suppose u^,U2 i Q^, i = 1,2,3,4,5,6 ,

By equation (11) in proposition 6.3

2 ^ 2 ( 8 1 2 3 )  - G - (f(8i n 82) +  f ( 0 2  " G3) +  ^ ( 8 3  " Gi?)

+ f(gr n n Q 3), (13)

2<f((Q. n Q ) u (Q n Q )) < f(Q. n Q ) + f(Q. n Q.) (14)
i j  I X  i j  i x

- f(Q^ n Qg n Qj) i ^ i ^ k e {1,2,3}.

Equations (13 and (14) give

2 s £(83 2̂3’ - 3 - f(Gi n n 8 3 ) , (15)

2 < £(Q323> - 5 . (16)

Consider the two cases, ^(8^23) “ 2,3. If f(Gi2g) “ 2 then

/ G123 ana

3 ^ ^(^12345) - ^ " (^^^123  ̂G4) + 2(84 ^ 85) + f(8 g n 8123))

+ f(8i23 n 84 n 8%) , (1?)

I^f((8i23 ^ 8̂ ) u (8123 n 85))  ̂f(8i23  ̂84) + ^(8123  ̂85)

- f ( 8 i 2 3  n 84 n Q ^ ) , (I8)
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2 3 f(Gi n Qj) u (0^23 n Gi)) ^ f(Qi n 8 . )  + n 0^ 23)

- f(8i23 n Gi n 8.), i ^ i e {4,5}. (19) 

Equations (17), (18) and (19) give

5 < 2(f(Q^23 " V  + f(e^23 n Q5) + f(Q^ n Q3))

- 3f ( Q ^23 n 84 n 85)' , (20)

3 s £(8 ^2345) ^ 7/2 -  3 /2  £(8323 n 84 n Qg) . (21) 

Thus f(Qn-?,c) = 3, f(Q,o-3  ̂8. n Q_) < 1  and Q_ c o,

I£ 8323 n 84 n Qg = ,} then £(8333 " 84) = £(8333 n Qg) =

£(84 n Qg) = o. Thus Q323 n Q4 = vg, 8322 n Qg = V3 , 84 n Qg = V4

which yields a contradiction since <= 8^2345 *

If 8123^ 84 n 8 g = V c V(G) then f (Q 23 ^ 84 n 85) since

^4  ̂ 2 3 2 3 .  I f  V = V^, £ (8 3 3 3  n 84  n 85 )  s £ ( 8 3 2 3  n 84 )  +  £ ( 8 5 )

-  £ ( ( 8 3 2 3  r, 8 4 )  u 8 g ) ,  £ (8 3 3 3  n 84 )  =  1 , £ ( ( 8 3 3 3  n Q^) u Qg) > 3 ,

thus f(8^23 n 8^ n Q^) = O and R(u^,U2) is configuration (c) shown 

in figure 6.12. Similarly if v = v^. If v V2 ,v^ then 

£(8i23 n 84) = 1 = £(8323 n Qg) and £ (83334g) = ^33345,

R(u^ ^2  ̂ f^ bhe configuration (c) or (d) in figure 6 .1 2 .

I f  f ( 8 i 2 3  n  G 4  n  O 5 ) =  1 ' t h e n  f ( Q ^ 2 3  "  8 5 ) =  f ( 8 i 2 3  "  8 4 ) =  1

and f((8^23  ̂G4) u (8̂ 23 n Qg)) = 1 = (̂8̂ 23 ̂ 845^- Also

^^^123  ^ G45  n Q^)  <  f ( 8^23  ^  G 4 5 )  f  ( 8 g } - f  ( ( 8 1 2 3  ^ 8 4 g )  u Qg)  

and f((8^23  ̂8^5) u Qg) > 3. Thus f(8^23  ̂ G45 " Qg) = O and 

R(u^,U2) is the configuration (c) in figure 6 .1 2 .

If 1X8^23) ^ then f(Q^ n Q^ n Q^) ^ O. If f(Q^ n Q2 n Q^) = 3 

then f(Q^ n Q2) = f (82 n Q^) = fXQ^ n Q^) = 1  and thus Q^ n Q2 = v^.
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Qg n Qg = Vg, Q^ n Q^ = Vg. If f(Q^  ̂ Gg  ̂Q^) = 0  then 

f(Q^ n Q^) = ffQg n Q ) = f(Qg n Q^) = 1 .  As a consequence 

Rfu^/Ug) is the configuration (a) or (b) in figure 6.12.

Note that as a consequence of the above argument if (v^,Vj) e E(G) 

then there is no Q tor some k 7̂ £ e{l,2,3 ,4,5,6 } . Thus

suppose that each pair {u^/U^}of remote degree two vertices gives 

rise to R(u^,U2) in one of the configurations (a), (b), (c) or (d)

in figure 6 .1 2 .

Consider a pair of remote degree two vertices. If

R(Ui,U2) contains a u^ 5̂ u^^u^/ d(u^) = 2 , remote from u^ and u^ 

then either there is no Rfu^/u^) or the minimality of some Q(v^,vJ 

c r(u^,U2) is contradicted. If Rfu^/Ug) contains a u^ ^ u^fUg, 

dfUg) = 2, not remote from u^ or u^ then apply 3g or 3  ̂ to construct 

G. Thus suppose R(u^,U2) does not contain a u^ 7̂ dXu^) = 2.

_ Consider all pairs of remote degree two vertices. If R(u^,U2 )

is type (c) or (d) for each pair {u^,U2) of remote degree two 

vertices then there is a vertex of degree greater than p ^ / which 

by proposition 6.8 is a contradiction. Thus suppose there is a 

pair {u^^u^} of remote degree two vertices such that Rfu^^Ug) is 

type (a) or (b) .

If R(u^,U2) is type (a) or (b) then there is a u^ ^ u^^u^/ 

dfu^) = 2, remote from u^ or U2 . If u^ is remote from u^ or U2 

then either Rfu^/u^) or RCu^/U^) is type (a) or (b) for if not then 

R(u^,U2) would by type (c) or (d) . If Rfu^/u^) is type (a) or (b) , 

then ftRtu^fU^) u RCu^/U^)) = 1 and RCu^/U^) £ RCu^^u^) u R(u^,U2), 

which is impossible. If u^ is remote from u^ but not U2 r then
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32 constructs G; similarly for u^ remote from u^ but not u^. The 

proposition is thus established.

Figure 6.13 shows the construction of coplanar KCs using the 

operations 3^/ 32f and «

6.2.4 Construction by Assur groups

Adequate coverage of this idea does not seem to have 

appeared in the english literature on the subject (see Dobrjanskyj 

1966, Chapter 2, sections 4 and 5) thus the explanation is 

tentative and is included for the sake of completeness.

(2^ The idea underlying Assur group construction is that a given

coplanar KC (indeed any KC) can be constructed by the addition of 

certain sets of coplanar KCs to a smaller coplanar KC with the 

same degree of freedom. This addition is effected by specifying 

joints of attachment. In order to preserve the degree of freedom 

the added coplanar KCs have the property that if all the joints of 

attachment were connected to a single link the result would have 

zero degree of freedom. Also no subset of the added coplanar KC 

has this property. The way in which a coplanar KC is constructed 

from a single fixed link and a set of cranks serves to provide a 

scheme of classification (figure 6.14). The theoretical basis 

of this method requires that each coplanar KC has a sub-KC of the 

correcttype. The implementation of the method seems to require a 

set of coplanar KCs for addition, whose size increases with the 

number of links in the KCs to be constructed.

o

The construction of the sets of coplanar KCs required for
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addition is clearly associated with the generation of elements in 

C^(l,2; p,0) , p = 3, 5, 1, ... but with more complex subgraph 

conditions (figure 6.15).

6.3 Representation of C2(l,2), , 0^(1,2), 2)

The transpose (J,L) for acoplhhar KC(L,J) in is a simple 

graph. In this section C^(2,2) and C2(l,2) denote these graphs.

(22)

For a graph G = (V,E) e

f(V^) = 2 IV3 I - IE3 I - 3

is defined for G[V^],V^ c v . A single vertex has f = - 1, two

vertices joined by an edge has f = O and three vertices joined by

two edges has f = 1. Also, two non-adjacent vertices have f = 1.

A simple graph G = (V,E) is in C2(l,2; p,f) if and only if

(1) |e| = p, |v| = l/gfp + f + 3),

(2) f(V^) > 1 for all 3-vertex connected subgraphs G[V^] , c v,

(3) G is 2-edge connected.

A simple graph is in C^{2,2-, p,f) if and only if (1) and (2) above 

are satisfied together with,

(4) G is 2-vertex connected.

The graphs in €^(1,2; p,f) have p ^ f + 3 and the lower 

bound is attained for the cycle graph with f + 3 vertices. Also 

€^(1,2; p,l) = €^(2,2; p,l) and C 2 (l,2 ; p,0) = C2 (2 ,2 ; p,0) .

The graphs in €^(1,2) and C^{2,2) are defined similarly but 

with condition (2) replaced by

(2) f(V^) > O for all 2-vertex connected subgraphs G[v^], £ V.
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6.4 Construction of 0^(1,2), 0^(2,2), 02(1,2), C^{2,2)

The graphs in C2(l,2) and €^(2,2) can be constructed by 

degree sequence methods similar to those in section 6.2. They 

may also be constructed by the addition of suspended chains, 

suspended cycles and single edges, using Whitney's theorem,

(Whitney 1932), on the construction of 2-vertex connected graphs. 

Consider a single edge as a suspended chain of length zero.

Suppose that the construction of a graph in C2(l,2; p,f) 

from an n-cycle requires a^ additions of suspended chains of 

length i and b^ additions of suspended cycles of length i.

Counting edges and vertices gives

p = n + T(i+l)a. + T(i+l)b. , (23)u 1 ^ 1
l/2 (f + p + 3) = n + ^ia^ + ^ib^ . (24)

(23 and (24) give 
1V(a.+b,)= /g(D - f - 3) (25)

In this section methods based on subgraph replacement are 

examined in detail. First some properties of graphs in C2(l,2) 

and C^(2,2) are given. Note that these properties also hold 

for graphs in €^(1,2) and C2 (2 ,2), respectively.

Proposition 6.13. If G = (V,E) e C (1,2), V., V_, ..., V c V2 1 2  m
and g Cv  ̂ u V_ u ... u V ] has n edges not in g Cv .], G[V_], ... , 1 2  m 1 2
g Cv  ] then m

m m
f ( U V.) = y f(v.) - y f(v. n V.) + y f(v. n V. n v. ) 

i=i ^ i=i I i>i 1 ] i>j>k I : ^
1 m

+ .... + (—1) f ( n V.) — n . (26)
i=l ^

Proof. Straightforward counting argument.
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Proposition 6.13 has some simple consequences for the 

connectedness of graphs in C2(l,2; p,0) and C (2,2; p,l). First 

CgflfZ); p,0) = 0 2 (3 ,3 ; p,0) and second €2 (1 ,2 ; p,l) = C^{2,2-, p,l)

Consider G e C^{2,2), Let T(G) denote the set of vertices 

V  e V(G), d(v) = 3 ,  such that G - e e C (2,2) for some edge e 

incident to v. Let S(G) denote the set of suspended chains in G, 

such that for a suspended chain S £ S(G), G - S £ €2 (2 ,2), where 

S denotes the interior vertices of the suspended chain.

Proposition 6.14. If G £ C (2,2), G not a cycle, then 

|t(G) I + |s(G) I > 2.

Proof. Extensive use is made of inequality (13) of section 5.3 

which implies that for any graph in €^(2,2) there are at least 

three degree two or degree three vertices.

Suppose first that there is v^ £ V(G), d(v^) = 3,

V  ^ T(G). Assume that G - v has at least two blocks, not o o
single edges, with vertex sets and W^, such that and 

each contain exactly one cut vertex in G - v^. Otherwise 

|s(G) I > 2  and the proposition holds. One of the following 

holds for V^:

(1) G[v^] is a cycle,

(2) g Cv ^] has a suspended chain S such that there is a 

suspended chain in G, c s, (this follows since 

G[V^] £ C^(2,2)),

(3) g Cv ^] has a vertex v^, d(v^) = 3 in G and G[V^].

If (1) then | s ( G ) |  > 1 .  If (2) then either £ S(G)
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and S(G) > 1 or G - has at least one block, not a single

edge, with vertex set c v^, which contains exactly one cut

vertex in G - S^. If (3) then either v^ e T(G) and |T(G)| > 1 

or G - v^ has at least one block, not a single edge, with 

vertex set c which contains precisely one cut vertex 

in G - v^. The above argument can be repeated, in each case, 

with V_ in place of However, it cannot be repeated

indefinitely since V c v^. Thus |t(G)| + |s(G)| > 1, for 

V^. Similarly for w^, thus |t(G)| + | s ( G ) |  > 2  and the

proposition holds.

Second, suppose that there is a suspended chain S^ é S (G) 

The graph G - S^ has at least two blocks, not single edges, 

with vertex sets and W^, such that and each contain 

exactly one cut vertex in G - S^. The above argument can be 

applied to and yielding |t(G)| + |s(G)| > 2 .

Finally suppose that each suspended chain is in S(G) and 

each degree three vertex is in T(G). If [t(G)| = O then there 

is at least one suspended chain in G. If there is only one 

suspended chain S e S(G) then inequality (13) of section 5.3 for 

G - S £ €2 (2 ,2) is contradicted. Thus |s(G)| > 2 .  If 

|T(G)I = 1 then there is at least one suspended chain S £ S (G) , 

thus |t(G) I + |s(G) I > 2 .

Now consider G € €2 (1,2). Let T(G) denote the set of 

vertices v £ V(G), d(v) = 3, such that G - e £ €2 (1 ,2) for some 

edge e incident to v. Let S(G) denote the set of suspended 

chains and suspended cycles in G such that for a suspended chain 

with interior vertices S, in S(G), G - S £ €^(1,2).
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Proposition 6.15. If G e C (1,2), G not a cycle, then 

|t (G) I + |s(G) I >2 .

Proof. If G € €^(2,2) then the proposition holds by proposition

6.14. If G e €^(1,2) then there are at least two blocks with 

interior vertices and in G which contain excactly one cut 

vertex in G. Consider V^. If is a cycle then |s(G)| > 1  

and if is not a cycle then by proposition 6.14 |t (G)| + |s(G)| > 1.

A similar argument applies to W^, thus |t (G)| + |s(G)| > 2 .

Consider the subgraph replacement operations in figure 6.16.

(2) There are variants of y and depending on the relative

orientation of the subgraphs on the right and left. For 

instance y^ has {w^,w^,w^,w^} = {v^,V2 ,Vg,v^} but w^ need not

necessarily be the same as v^. The subgraph replacement operations 

to provide a method of construction for graphs

€2 (1 ,2) although no proof has been found. A conjecture is made.

Conjecture 6.16. If G £ €^(1,2; p,f), f > 1, G not a cycle, 

then G can be constructed from an element in €2 (1 ,2 ; p-2,f) by 

Yi-Yj.Tg. or Y4 .

The statement of the above conjecture excludes the case f = O.

The graphs in €^(1,2; p,0) correspond to rigid structures without

substructures. If G e € (1,2; p,0) then G has no vertices of

degree two unless p = 3, in which case G is a 3-cycle. In fact

€2 (1 ,2 ; 3,0) = K , the complete graph on three vertices, but

€ (1,2; 5,0) and €_(1,2; 7,0) are empty. However, €_(1,2; 9,0) = K 
 ̂  ̂ I 3,3

the complete bipartite graph on two sets of three vertices. The

O
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development is again broken and Cgfl/Z; 11,0) is empty. €2 (1 ,2 ; 13,0) 

is not empty (figure 6.17) and it seems that the conjecture might 

be extended by excluding these particular cases.

Figure 6.18 shows graphs in €2 (1 ,2 ; p,l), p ^ 10, which 

indicates that the difficulties encountered in generating structures 

with small numbers of'links do not arise for K€s with f = 1.

The corresponding result for graphs in €2 (1 ,2) to the conjecture 

6.16 can be proved. The case for graphs in €2 (1 ,2 ; p,0) requires

only the operation and is given in Laman (1970, Theorem 6.4).

Proposition 6.17. If G £ €^(1,2; p,f), G not a cycle, then G

can be constructed from an element in €^(1 ,2 ; p-2 ,f) by Y ^ «

Proof. If G has no degree three vertex in T(G) then by proposition 

6.15 y^ or y2 constructs G. If G has a degree three vertex in T(G) 

adjacent to {v^,V2 ,V2>, suppose there are P(v^,V2), ^(Vg'Vg), 

P(v3 ,Vi) c v(G) containing {v^,V2 ), and {v2 ,v^} respectively

such that f(P(v^,V2)) = f(P(v2 ,V2)) = f(P(v2 ,v^)) = O. Also 

suppose there are no subsets of these sets of vertices with the 

same properties. These sets are unique by using proposition 6.13.

However, there is a pair of vertices, say {v^,V2 l such that 

V e P(v^,V2) . Thus G is constructed by y^. If at least one of 

the sets P(v^,V2), or ^oes not exist then again

y^ constructs G.

Proposition 6.18. If G £ C^{2,2‘, p,f), G not a cycle, then G

194



o

can be constructed from an element in €2 (2,2; p-2,f) by y ,y , or y^

Proof. Similar to the proof of proposition 6.17 but using 

proposition 6.14 instead of proposition 6.15.

The difficulties in constructing graphs in €2 (1 ,2 ; p,0) = 

€2 (2 ,2 ; p,.0) are overcome for graphs in €2 (1 ,2 ; p,0) = €2 (2 ,2 ,* p,0)

and figure 6.19 shows graphs in C^/1,2; p,0) for p < 9.

6 .5 Planar K€s in €2 (2 ,2) and €2 (2,2)

Let P2 (p,f) and P^fP/f) denote planar graphs in €2 (2 ,2 ; p,f) 

and €2 (2 ,2 ; p,f) respectively. If G e P (p,f) has an embedding 

in the plane with t^ faces of degree i > 3 , then

2f - 3 = y (i - 4) t^.

Thus if G e P 2 (P,0) , then t ^ 2 and, P (p,0) , p > 3 is empty.

Also if G e ^^(Pfi) then ^(i - 4) t^ = O and each embedding of G

has all faces of degree four.

Gonsider an embedding of G g P^fP/f) which has all finite faces

degree four. The infinite face has degree 2f + 2 and the

embedding is a [l/2(p - 3f - 1), 2f - 2] quadrangulation (Brown 

1965), (figure 6.20(i)). Suppose that f diagonals or braces 

are added to the finite faces with at most one diagonal in each 

face such than an Cn,m] sub-quadrangulation has less than 

l/2m + 1 braces. The resulting graph is in P2 (p + f, O) and is 

called a minimum bracing of the quadrangulation (figure 6 .2 0 (ii)) .

An (a,b) square grid (figure 6.21(i)) is an embedding of an 

element in Pg(^ + b + 2ab, a + b - 1) with particular metric 

properties. It is interesting to examine how these metric
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properties affect the placing of braces in order to ensure that 

the result is rigid. Such a bracing is minimum if it uses the 

smallest possible number of braces.

It has been shown (Bolker and Crapo 1977) that

(1) A bracing of an (a,b) square grid is minimum if and only if 

the braces correspond to the edges of a spanning tree in the 

complete bipartite graph ^ whose edges represent the grid 

squares (figure 6 .2 1 (ii)).

As a consequence the following necessary condition on minimum 

bracings is given.

(2) Any permutation of rows and columns of an (a,b) square grid 

transforms one minimum bracing into another.

The necessary and sufficient condition for minimum bracings 

of a general quadrangular (a,b) grid corresponding to the (a,b) 

square grid, but without specific metric properties can be formul

ated as follows.

(3) A bracing of a quadrangular (a,b) grid is minimum if and only 

if there are a + b - 1 braced quadrangles such that no (a',b‘),

a ’ < a, b' < b subgrid has more than a' + b' - 1 braced 

quadrangles.

A bracing of a quadrangular (a,b) grid which satisfies (3) 

together with the condition that any permutation of "rows" and 

"columns" of the quadrangular grid yields another bracing 

satisfying (3) is a minimum bracing of the corresponding (a,b) 

square grid. Thus the condition (2) seems to be the essential 

consequence of the particular metric properties of the square 

grid for placing the braces to ensure that the result is rigid.
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FIGURE 6.1 A graph in C (2,2; 8,1) with a vertex of degree 
four.

o

FIGURE 6.2 The suspended chain S .o

O

FIGURE 6.3 The block (figure 6.2).

197



/I
>— 6 ..............j?..  6  Ah— Ô

^     e ^  @ >

o (ii)

A  O ' —  ' ' " ^  ■ J ►

w v ™ v

N K
rczM

FIGURE 6.4 Two constructions of a graph in C^(2,2; 12,1) 
by suspended chain additions: (i) a^ - 2, a^ = 2 and (ii)
ai = I- “2 = 2. ^3 = 1.

o
( > < ( (»'.e1

<

< t— —4

4̂---4

FIGURE 6.5 A construction of a graph in C^(2,2; 9,0) 
by suspended chain and cycle additions: a = 1, b = 1,
•̂3 =  ^-
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5

O P(3,4) = {3,4} P(3,5) = {3,4,5,9,10,11}
P(l,3) = {1,2,3,4,5,6,7,8,9,10,11,12}
Q(3,4) = {3,4,5,7,8,9,10,11,12} or 

{1,2,3,4,5,6,9,10,11}
Q(3,5) = {3,4,5}
Q(l,3) = {1,2,3} or {1,3,4,5,6,7,8,9,10,11,12}

O

FIGURE 6.6 The sets P(u,v) and Q(u,v)

k 1

U

k>4

FIGURE 6.7 Graphs in Cj(2,l) with all degree two vertices 
adjacent to a single vertex.
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FIGURE 6.8 Graphs in C^(2,l),.f ^ 1, with no remote degree 
two vertices.

1 ©-
w -o 3

w
U

O
w, w_

FIGURE 6.9 Operations 3i» $2 and gg
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o FIGURE 6.10 A graph in Cj^(2,l; 11,0) not constructible
from a graph in Ci(2,l; 9,0) by gj, g£ or gg.

O

FIGURE 6.11 Configuration in G.
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(a)

u
1

V
2

(b)

u.‘1

c

u

V''2 4Id)

FIGURE 6.12 Four configurations for RCu^rUg). P and Q 
denote subgraphs with f = 1 and f = 2 respectively.
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FIGURE 6.13 Construction of some graphs in Cj(2,2; 8,1) by
3i, 32 and 3g.

0---0
O 6

o
a a a a

a a

+

FIGURE 6.14 The Construction of coplanar KCs by Assur groups. 
The label "a" denotes a "joint of attachment".
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FIGURE 6.15 Some coplanar KCs required for Assur
classification.
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Y3

V,V, %2

O
Yif

ow.

FIGURE 6.16 The operations , y£, yg and y^. The vertices
marked ®  are degree two.
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FIGURE 6.17 Graphs in C (1,2; p,0), p < 13

11

O
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O

FIGURE 6.18 Graphs in Cg(l,2; p,l), p < 10,
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1̂t ( ' > ' 1̂> 1\ ■

1 (k\* (

o

FIGURE 6.19 Graphs in €2 (1 ,2 ; p,ü), p < 9.

208



lii)

O
FIGURE 6.20 (i) A [2,6] £uadrangulation in and
(ii) a minimum bracing in P2 (2 1 ,0).

o Ii)

FIGURE 6.21 (i) A minimum bracing of a (4,3) square grid
and (ii) the corresponding spanning tree of K

4,3
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