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NONEQUILIBRIUM STATISTICAL MECHANICS AND ENTROPY PRODUCTION
IN A CLASSICAL INFINITE SYSTEM OF ROTATORS.

by David Ruelle*.

Abstract. We analyze the dynamics of a simple but nontrivial
classical Hamiltonian system of infinitely many coupled rota-
tors. We assume that this infinite system is driven out of ther-
mal equilibrium either because energy is injected by an external
force (Case I) , or because heat flows between two thermostats
at different temperatures (Case II). We discuss several possible
definitions of the entropy production associated with a finite or
infinite region, or with a partition of the system into a finite
number of pieces. We show that these definitions satisfy the ex-
pected bounds in terms of thermostat temperatures and energy
flow.
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0 Introduction.

In the present paper, we study certain classical Hamiltonian systems consisting of an
infinite number of coupled degrees of freedom (rotators or “little wheels”). For a system in
the class considered, the time evolution (f t) is well defined, and given by the limit (in some
sense) of the Hamiltonian time evolution for finite subsystems. [Note that other infinite
systems, like gases of interacting particles, would be much more difficult to control]. A
probability measure on the phase space of the infinite system is called a state, and it has
a well-defined time evolution. We introduce a family of initial states called Γ-states (they
are Gibbs states of some sort). Some of these Γ-states describe a situation where parts
of our infinite system (thermostats) are at given temperatures. For a Γ-state ℓ, the time-
evolved state f tℓ gives a finite Gibbs entropy St(X) to each finite subsystem X of the
infinite system L. If X is infinite (but has finite interaction with the rest of the system)
the difference ∆St(X) = limY →∞(St(X ∩ Y ) − S0(X ∩ Y )) still makes sense.

The bulk of the paper is dedicated to a discussion of the (nontrivial) dynamics of
our infinite system of rotators. Understanding the dynamics of the system is a necessary
prerequisite to analyzing its nonequilibrium statistical mechanics. We shall in fact ex-
amine a specific nonequilibrium problem: is it possible to define a local rate of entropy
production (associated with a finite region X) in a nontrivial manner? This possibility has
been suggested by Denis Evans and coworkers [16]. We examine their proposal and some
alternatives, but obtain only partial results. Because of the obvious physical interest of
the problem, we now give some details.

By time-averaging f tℓ or d∆St(X)/dt (over a suitable sequence of intervals [0, T ] →
∞) we may define a nonequilibrium steady state

ρ = lim
T→∞

1

T

∫ T

0

dt f tℓ

and an average rate of entropy growth

σ(X) = lim
T→∞

1

T
∆ST (X)

(we do not know that σ(X) is uniquely determined by ρ and X).

We ask if an entropy production rate e(X) can be meaningfully associated with a
finite set X ⊂ L. For definiteness we shall think of two physical situations. In Case I
there is a finite set X0 such that an external force acts on X0, and the initial state ℓ
restricted to L\X0 corresponds to thermal equilibrium at temperature β−1. In Case II
we have L = X0 ⊔ L1 ⊔ L2 where X0 is finite, L1 and L2 are infinite and ℓ restricted to
Li corresponds to thermal equilibrium at temperature β−1

i (with β−1
1 < β−1

2 ). There is a
thermodynamic formula for the global rate of entropy production:

eΘ = β × energy flux to thermostat (Case I)

eΘ = (β1 − β2) × energy flux to thermostat 1 (Case II)
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[Note that Case I resembles Case II, where thermostat 2 is replaced by the external force,
and ascribed an infinite temperature (β2 = 0)]. The question is how to define a local rate
of entropy production e(X) ≥ 0 such that supX finite e(X) = eΘ.

The original proposal by Evans and coworkers* is to take, for X finite,

e(X) = −σ(X)

This is shown to be the average rate of volume contraction in the phase space [X ] of the
subsystem X due to the fluctuating forces to which it is subjected by the complementary
subsystem L\X .

Another idea is to replace the entropy S(X) by the conditional entropy given formally
by Š(X) = S(L) − S(L\X). The corresponding rate of entropy production is

ě(X) = σ(L\X)

We shall make the important physical assumption that the expectation value of the
energy for each finite system X has a bound independent of time**. It follows that ě(X)
is finite, and one has

0 ≤ e(X) ≤ ě(X)

Instead of using a finite set X one may base a definition of entropy production rate
on a finite partition A = (X0, X1, . . . , Xn) of L, with finite boundary (this will be made
precise later). We define

e(A) =

n
∑

j=0

σ(Xj) , ě(A) =
∑

j:Xj infinite

σ(Xj)

In particular, in Case II, for X finite ⊃ X0, we have

ě(X) = ě((X, L\X)) ≤ ě((X, L1\X, L2\X))

and the right-hand side e((X, L1\X, L2\X)) seems a rather natural definition of entropy
production rate.

We shall later study further properties of the entropy production rates defined above,
but we note here that they are all bounded by the thermodynamic expression eΘ. The

* Actually, the ideas presented in [16] are formulated for Case I, and for a system
thermostatted at the boundary rather than an actually infinite system. While the two
idealizations are technically quite different, they are expected to give the same results in
cases of physical interest.
** Note that in Case I, if the system has dimension ≤ 2, the external force may cause an

infinite accumulation of energy in a finite region. Our assumption that the nonequilibrium
steady state ρ gives a finite expectation to the energy of finite subsystems is thus invalid,
and so is our analysis.
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problem is to prove that they depend effectively on X or A, and are not identically equal
to 0 or eΘ.

We now recall some earlier work to put the problem of defining a local entropy pro-
duction rate in perspective.

In earlier studies of quantum spin systems [15], [11], the global entropy production
(for Case II) was defined by the thermodynamic relation

eΘ = (β1 − β2) × energy flux to thermostat 1

but the quantities e(X), ě(X) were not introduced because they would automatically
vanish. This is because, for quantum spin systems we have |Št(X)| < St(X) (see [3]
Proposition 6.2.28(b)); for classical rotators by contrast, the entropy is not bounded below.

The statistical mechanics of classical systems outside of equilibrium can be studied
in models with nongradient forces and a “deterministic thermostat” [7], [10]. Such a non-
hamiltonian system corresponds in effect to a rather general time evolution (f t) defined by
a vector field X on a finite dimensional manifold M . In general, no absolutely continuous
invariant measure (i.e., “phase space volume” m) on M is preserved by the time evolution,
but one may assume that there is a natural (singular) measure ρ describing a nonequi-
librium steady state. One can argue that the average phase space volume contraction
∫

ρ(dx)(−divmX )(x) is the rate of entropy production by the system. This identification
(for which see Andrei [1]) has been used in particular by Evans, Cohen, and Morriss [6],
and by Gallavotti and Cohen [9] in the study of fluctuations of the entropy production.
See also the work of Posch and Hoover [13], Gallavotti [8].

Note now that if we introduce a nongradient force ξ(q) in the Hamiltonian equations
of motion, the volume dp dq is preserved, but energy conservation is lost and this is why a
thermostat is needed. In the case of a deterministic thermostat, the phase space contraction
is caused by the thermostat (as one can check in the example of the isokinetic thermostat

corresponding to an added “force” −α(p, q)p, where α(p, q) = p · ξ(q)/p · p). In the lab
however the thermostat is of a different nature: it is typically a large system (reservoir)
with which the small system of interest can exchange heat, and it is not clear at first how
to define entropy production. In particular, a nonequilibrium steady state for the infinite
system L may well have absolutely continuous projection on the phase space of the small
system X [4], [5], [2], which contradicts e(X) > 0 but may allow ě(X) > 0.

Finally, to indicate the difficulty of the problems considered here, and in particular
of proving ě(X) > 0, consider Case II in dimension ≤ 2. There (as indicated by the
macroscopic continuous limit), f tℓ presumably tends to an equilibrium state ρ and the
entropy production ě(X) vanishes for all X .

Acknowledgments.

During the lengthy elaboration of the present paper, I have benefitted from useful
correspondence with D. Evans, and many discussions with J.-P. Eckmann, G. Gallavotti,
J.L. Lebowitz, H. Moriya, H. Posch, and L.-S. Young.
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1 Description of the model.

Our system will be an infinite collection of rotators labelled by x ∈ L, each with
Hamiltonian Hx(px, qx) = p2

x/2 + Vx(qx), where px ∈ R, qx ∈ T. [This is for simplicity; it
would probably be easy to replace the rotators by more complicated systems]. We let Γ
be a set of unordered pairs {x, y} of points in L, i.e., Γ is a graph with vertex set L, and
we define a formal Hamiltonian for the infinite system of little wheels:

∑

x∈L

Hx(px, qx) +
∑

{x,y}∈Γ

W{x,y}(qx, qy)

The functions Vx, W{x,y} are assumed to be smooth.

For X ⊂ L, let ΓX = {{x, y} ∈ Γ : x, y ∈ X} and, when X is finite, write

HX(pX , qX) =
∑

x∈X

Hx(px, qx) +
∑

{x,y}∈ΓX

W{x,y}(qx, qy)

where pX = (px)x∈X ∈ RX , qX = (qx)x∈X ∈ TX . We shall also make use of a constant
external force* F ∈ RX0 acting on a finite set X0.

For finite X , a time evolution (f t
X) on RX × TX is defined by

d

dt

(

pX

qX

)

=

(

FX − ∂qX
HX(pX , qX)
pX

)

where the term FX is the component of F in RX , and is present only in case I. We have
thus

f t
X(pX(0), qX(0)) = (pX(t), qX(t))

We shall suppose that Γ is connected and, for x, y ∈ L, define

d(x, y) = min{k : ∃x0, . . . , xk ∈ L with x0 = x, xk = y and {xj−1, xj} ∈ Γ for j = 1, . . . k}

We write then Bk
x = {y : d(x, y) ≤ k}.

1.1 Assumption (finite dimensionality).
There is a polynomial P (k) such that for all x ∈ L and k ≥ 0

|Bk
x| ≤ P (k)

[We may take P (k) = 1 + akb for some a, b > 0; Γ is thus assumed to have order ≤ a, and
“dimension” ≤ b].

* F is taken constant for simplicity. More generally one could consider the case of a
smooth function F (qX0

, φtα) of qX0
and φtα with values in RX0 , where (φt) is a smooth

dynamical system on a compact manifold A, and α is distributed according to some pre-
scribed (φt)-ergodic measure on A.
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Note that by compactness of T and the assumed smoothness of Vx, W{x,y}, every
“force” term (i.e., each component Fx of F for x ∈ X0, each ∂qx

Vx, each ∂qx
W{x,y},

∂qy
W{x,y}) is bounded, and has bounded derivatives with respect to its arguments qz.

1.2 Assumption (uniform boundedness).
The force terms ∂qx

Vx, ∂qx
W{x,y}, ∂qy

W{x,y} and their qz-derivatives (up to any finite
order) are bounded uniformly in x, y ∈ L.

1.3 Lemma (uniform boundedness of forces).
The forces Fx − ∂qx

HX(pX , qX) or −∂qx
HX(pX , qX) and their qz-derivatives have

modulus bounded respectively by constants K, K ′. [We shall also denote by K̄ a constant
≥ 2K, P (1)K ′,1].

This follows from Assumptions 1.1 and 1.2 [only the bounded order of Γ is used from
Assumption 1.1].

2 Time evolution of infinite systems.

For X ⊂ L, we shall from now on write [X ] = (R×T)X . We note the following facts
which follow from Lemma 1.3.

(i) For X finite and ξ ∈ [X ], if f t
Xξ = (px(t), qx(t))x∈X we have the estimate

|px(t) − px(0)| ≤ K|t| when x ∈ X

(ii) For X̃ finite and ξ̃ ∈ [X̃] let also f t
X̃

ξ̃ = (p̃x(t), q̃x(t))x∈X̃ . Then, if px(0) = p̃x(0),

qx(0) = q̃x(0) for some x ∈ X ∩ X̃ we have

|px(t) − p̃x(t)| ≤ 2K|t|

|qx(t) − q̃x(t)| ≤ K|t|2

and since |qx(t) − q̃x(t)| ≤ 1 ≤ K̄, we also have

|qx(t) − q̃x(t)| ≤ [K|t|2.K̄]
1
2 ≤ K̄|t|

so that
max(|px(t) − p̃x(t)|, |qx(t) − q̃x(t)|) ≤ K̄|t|

(iii) Let k ≥ 0 and X ⊃ Bk
x , X̃ ⊃ Bk

x. Then, with the notation of (ii), if

(∀y ∈ Bk
x) py(0) = p̃y(0) and qy(0) = q̃y(0)

we have

max(|px(t) − p̃x(t)|, |qx(t) − q̃x(t)|) ≤ (K̄|t|)k+1

(k + 1)!

indeed, by the equation of motion and induction on k we have

| d

dt
(f t

Xξ − f t
X ξ̃)| ≤ K̄

(K̄|t|)k

k!
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and the desired result follows by integration.

2.1 Lemma (a priori estimates).

For finite X, X̃ ⊂ L, let ξ ∈ [X ], ξ̃ ∈ [X̃], and f t
Xξ = (ξx(t))x∈X = (px(t), qx(t)),

f t
X̃

ξ̃ = (ξ̃x(t))x∈X̃ = (p̃x(t), q̃x(t)). With this notation,
(a) |px(t) − px(0)| ≤ K|t|, hence |px(t)| ≤ |px(0)| + K|t|
(b) if k > 0, and Bk−1

x ⊂ X ∪ X̃, and ξy(0) = ξ̃y(0) for all y ∈ Bk−1
x , then

|ξx(t) − ξ̃x(t)| = max[|px(t) − p̃x(t)|, |qx(t) − q̃x(t)|] ≤ (K̄|t|)k

k!

This follows from (i) and (iii) above [(b) is a rather rough estimate, but sufficient for
our purposes].

2.2 Proposition (time evolution).

Let (px(0), qx(0))x∈L ∈ [L] be given. For finite X ⊂ L, write (pX
x (t), qX

x (t))x∈X =
f t

X(pX
x (0), qX

x (0))x∈X . Then for each x ∈ L the limits

lim
d(x,L\X)→∞

pX
x (t) = px(t) , lim

d(x,L\X)→∞
qX
x (t) = qx(t)

exist, and (px(t), qx(t))x∈L is the unique solution of the infinite system evolution equation
with initial condition (px(0), qx(0))x∈L. We write (px(t), qx(t))x∈L = f t(px(0), qx(0))x∈L.

The existence of the limit follows from Lemma 2.1. Writing the infinite system evolu-
tion equation is left to the reader, as well as checking that (px(t), qx(t))x∈L is the unique
solution.

2.3 Remarks.

The limits in Proposition 2.2 are faster than exp(−k d(x, L\X)) for any k > 0, inde-
pendently of (px(0), qx(0))x∈L, and uniformly for t in any compact interval [−T, T ].

Existence and uniqueness theorems are known in more difficult situations; see for
instance [12].

The proof of Proposition 2.2 does not use the finite dimensionality of Γ, only its finite
order.

2.4 Notation.

In principle we use the notation (pX
x (t), qX

x (t))x∈X for the finite system time evolu-
tion (f t

X), and (px(t), qx(t))x∈L for the infinite system evolution (f t), but it will often be
convenient to drop the superscript X .

It is useful to compactify the momentum space R to a circle Ṙ by addition of a point
at infinity for each x ∈ L, and write [Ẋ] = (Ṙ × T)X for X ⊂ L. The phase space of
our infinite system is then [L] = (R × T)L ⊂ (Ṙ × T)L = [L̇]. We shall use the product
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topologies on [L] = (R × T)L and [L̇] = (Ṙ × T)L; therefore [L̇] is compact and [L] has
the topology it inherits as subset of [L̇]. If U ⊂ L we denote by πU the projection

πU : [L̇] = [U̇ ] × [ ˙L\U ] → [U̇ ]

2.5 Proposition (continuity of f t).

The map (ξ, t) 7→ f tξ is continuous [L] × R → [L] and, for each t, f t : [L] → [L] is a
homeomorphism.

To prove the continuity of (ξ, t) 7→ f tξ, it suffices to prove the continuity of (ξ, t) 7→
(px(t), qx(t)) for each x ∈ L, and this results from the uniformity of the limits in Proposition
2.2 (see Remark 2.3). By uniqueness of f t, the map f−t is the inverse of f t and, since
f−t : [L] → [L] is continuous, f t is a homeomorphism.

2.6 Proposition (smoothness of f t).

Let X ⊂ Y , X finite and Y finite or = L. For ξ ∈ [X ], η ∈ [Y \X ], write f t
Y (ξ, η) =

(px(t), qx(t))x∈Y . Then, for fixed η and each x ∈ Y , the map (ξ, t) 7→ (px(t), qx(t)) is
smooth [X ] ×R → R × T.

This results from the bounds on the derivatives (uniform in Y ) obtained in Proposition
2.7 below.

2.7 Proposition (estimate of derivatives).

Let Y ⊂ L, Y finite or = L, and

f t
Y (ηx(0))x∈Y = (ηx(t))x∈Y = (px(t), qx(t))

Write

r(i,j)
x (t; x1, . . . , xj) =

∂i

∂ti
∂

∂ηx1(0)
. . .

∂

∂ηxj(0)
ηx(t)

where x1, . . . , xj need not be all distinct; then

|r(i,j)
x (t; x1, . . . , xj)| ≤ Pij((|py(0)| + K|t|))

where Pij((py)) is a polynomial of degree ≤ i + 1 (the degree is 1 if (i, j) = (0, 0), ≤ i
otherwise) in the py with y ∈ Bi

x.

Let σ = σ(x, x1, . . . , xj) denote the smallest number of edges of a connected subgraph
of Γ having x, x1, . . . , xj among its vertices. Then the coefficients of Pij are positive and

≤ Mije
jK̄|t| (Lj|t|)τ

τ !

with suitable Lj , Mij > 0, for all τ such that 0 ≤ τ ≤ [σ − i]+ where we have written
[σ − i]+ = max(0, σ − i).

The proof is given in Appendix A.1.
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2.8 Proposition (estimate of differences).

We use the notation of Proposition 2.7. Let (ηx(0)), (η̃x(0)) ∈ [Y ] and define r̃
(i,j)
x as

r
(i,j)
x with η replaced by η̃. For finite X ⊂ L we assume ηy(0) = η̃y(0) when y /∈ X , and

write

∆r(i,j)
x (t; x1, . . . , xj; X) = r(i,j)

x (t; x1, . . . , xj; X)− r̃(i,j)
x (t; x1, . . . , xj ; X)

If d(x, X) > i, we have

|∆r(i,j)
x (t; x1, . . . , xj; X)| ≤ Q((|py(0)| + K|t|))

where Q((py)) is a polynomial of degree ≤ i + 1 (the degree is 1 if (i, j) = (0, 0), ≤ i
otherwise) in the py with y ∈ Bi

x.

Let σ = σ(x, x1, . . . , xj; X) denote the smallest number of edges of a subgraph of Γ
(not necessarily connected) connecting each point x, x1, . . . , xj to some point of X . Then
the coefficients of Qij are positive and

≤ Mije
jK̄|t| (Lj|t|)τ

τ !

for all τ such that 0 ≤ τ ≤ σ − i

The proof is given in Appendix A.2.

2.9 Remarks

Proposition 2.7, 2.8 will be used in the proof of Theorem 4.5 below. In view of these
applications the following facts should be noted.

(a) The condition d(x, X) > i in Proposition 2.8 is not a serious limitation because, for
the finitely many values of x such that d(x, X) ≤ i, one can estimate ∆r(i,j) by Proposition
2.7 applied to r(i,j) and r̃(i,j).

(b) Write σ = σ(y, y1, . . . , yj) and let y be fixed, then

∑

y1,...,yj

1

(σ − i)!
< ∞

Indeed, we have |yk − y| ≤ σ, hence

σ − i ≥
j

∑

k=1

|yk − y| − i

j

so that 1/(σ− i)! decreases faster than exponentially with respect to r1 = |y1−y|, . . . , rj =
|yj − y|, while |Br1

y | · · · |Brj

y | is polynomially bounded.
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3 Time evolution for probability measures.

Consider any probability measure ℓ on [L̇] = (Ṙ × T)L carried by [L] = (R × T)L

(i.e., ℓ gives zero measure to the points at infinity). We can find constants κnx > 0 such
that, if we write

Bn = {(px, qx)x∈L : |px| ≤ κnx for all x ∈ L}
we have ℓ(Bn) > 1− 1/n. We may thus write limn→∞ ||ℓ− ℓn|| = 0 where the measure ℓn

has support in the compact set Bn ⊂ [L], and (t, ξ) → f tξ is continuous on R × Bn. We
define then

f tℓ = lim
n→∞

f tℓn (norm limit)

Notice also that f tℓn has support in the compact set B′
n defined like Bn with κnx replaced

by κ′
nx = κnx + K|t| (see Lemma 2.1(a)). Therefore f tℓ is again carried by [L].

3.1 Proposition (continuity of time evolution).

If the probability measure ℓ on [L̇] is carried by [L], then the probability measure f tℓ
is well defined, carried by [L], and t 7→ f tℓ is continuous R → measures on [L̇] with the
vague topology.

For any continuous function A : [L̇] → R we have (f tℓn)(A) = ℓn(A ◦ f t), where
A ◦ f t restricted to Bn depends continuously on t with respect to the uniform norm on
C(Bn → R). Therefore (f tℓn)(A) is a continuous function of t, and so is its uniform limit
t 7→ f tℓ(A). This shows that t 7→ f tℓ is continuous with respect to the w∗ (=vague)
topology of measures on [L̇], concluding the proof.

Let ℓX be a probability measure on [Ẋ] for finite X ⊂ L. We write X → ∞ when, for
every finite U ⊂ L, eventually X ⊃ U . Suppose that for every finite U and A ∈ C([U̇ ] → R)
the limit

lim
X→∞

ℓX(A ◦ πUX)

exists, where πUX is the projection [Ẋ] = [ ˙X\U ] × [U̇ ] → [U̇ ]. This limit is then of the
form ℓ(A ◦ πU ) where ℓ is a uniquely defined probability measure on [L̇] which we call the
thermodynamic limit of the ℓX :

ℓ = θ limX→∞ℓX

This means that
πUℓ = w∗ limX→∞πUXℓX

or (modulo the identifications A → A ◦ πUX , A → A ◦ πU ) ℓ is the limit of the ℓX on

∪
U finite C([U̇ ] 7→ R) ◦ πU

which is dense in C([L̇] → R). In particular, if ℓ is any probability measure on [L̇], we have

ℓ = θ limX→∞πXℓ

We shall later also consider thermodynamic limits associated with a sequence Xn → ∞,
writing ℓ = θ limn→∞ ℓXn

if πU ℓ = w∗ limn→∞ πUXn
ℓXn

for all finite U ⊂ L.

10



3.2 Proposition (time evolution of thermodynamic limits).

Suppose that

θ limX→∞ℓX = ℓ

where ℓX , ℓ are probability measures carried by [X ], [L] respectively. Then

θ limX→∞f t
XℓX = f tℓ

uniformly for t ∈ [−T, T ].

We have to prove that, for every finite U ⊂ L, and A ∈ C([U̇ ] → R),

lim
X→∞

(f t
XℓX)(A ◦ πUX) = (f tℓ)(A ◦ πU )

We may (and shall) assume that |A| ≤ 1. Given ǫ > 0, we know that

||A ◦ πU ◦ f t − A ◦ πUX ◦ f t
X ◦ πX || <

ǫ

2

for sufficiently large X, say X ⊃ V for suitable V ⊃ U , for all t ∈ [−T, T ]. Under these
conditions we have thus

||A ◦ πU ◦ f t − A ◦ πUV ◦ f t
V ◦ πV || < ǫ/2

and

||A ◦ πUX ◦ f t
X ◦ πX − A ◦ πUV ◦ f t

V ◦ πV || < ǫ

which we shall use below in the form

||A ◦ πUX ◦ f t
X − A ◦ πUV ◦ f t

V ◦ πV X || < ǫ

Take now a function Φ ∈ C([V ] → R) with compact support and |Φ| ≤ 1, such that

||ℓ − (Φ ◦ πV )ℓ|| < ǫ

Using the notation a
ǫ∼ b to mean |a − b| < ǫ, we have

(f tℓ)(A ◦ πU )
ǫ∼ (f t((Φ ◦ πV )ℓ))(A ◦ πU ) = ℓ((Φ ◦ πV )(A ◦ πU ◦ f t))

ǫ∼ ℓ((Φ ◦ πV )(A ◦ πUV ◦ f t
V ◦ πV )) = ℓ((Φ(A ◦ πUV ◦ f t

V )) ◦ πV ) = ℓ(Ψt ◦ πV )

where the function Ψt = Φ(A ◦ πUV ◦ f t
V ) : [V ] → R is continuous with compact support,

hence extends to a continuous function on [V̇ ]. By assumption we have

|ℓ(Ψt ◦ πV ) − ℓX(Ψt ◦ πV X)| < ǫ
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for sufficiently large X , uniformly with respect to t ∈ [−T, T ] (this is because t → Ψt is
continuous with respect to the uniform norm of C([V̇ ] → R)). We may thus take W ⊃ V
such that, if X ⊃ W and t ∈ [−T, T ],

ℓ(Ψt ◦ πV )
ǫ∼ ℓX(Ψt ◦ πV X) = ℓX((Φ(A ◦ πUV ◦ f t

V )) ◦ πV X)

ǫ∼ ℓX((Φ ◦ πV X)(A ◦ πUX ◦ f t
X)) = (f t

X((Φ ◦ πV X)ℓX))(A ◦ πUX)

We have thus
|(f tℓ)(A ◦ πU ) − (f t

X((Φ ◦ πV X)ℓX))(A ◦ πUX)| < 4ǫ

when X ⊃ W , t ∈ [−T, T ]. We may now let Φ → 1, obtaining

|(f tℓ)(A ◦ πU ) − (f t
XℓX)(A ◦ πUX)| ≤ 4ǫ

as announced.

Proposition 3.2 also holds for the thermodynamic limit associated with a sequence
Xn → ∞

4 Γ-states and their time evolution.

We introduce now a special set of probability measures.

4.1 Definition (Γ-states).

We say that the probability measure ℓ carried by [L] is a Γ-state if there exist constants
β̃x > 0 (for x ∈ L), smooth functions Ṽx : T → R (for x ∈ L) and W̃{x,y} : T × T → R

(for {x, y} ∈ Γ) such that the β̃x, β̃−1
x , Ṽx, W̃{x,y}, ∂qx

W̃{x,y}, ∂qy
W̃{x,y} are bounded

uniformly in x, y ∈ L, and the following holds:

For every finite X ⊂ L, the conditional measure ℓX(dξ|η) of ℓ on [X ] given η ∈ [L\X ]
is of the form

ℓX(dξ|η) = const. exp[−
∑

x∈X

(
1

2
β̃xp2

x + Ṽx(qx)) −
∑

{x,y}

∗
W̃{x,y}(qx, qy)] dξ

where
∑∗

extends over those {x, y} ∈ Γ such that x ∈ X , and we have written ξ =
(px, qx)x∈X , η = (px, qx)x∈L\X .

[The Γ-states are Gibbs states* for a certain interaction given by the β̃x, Ṽx, W̃{x,y}].

If ℓ is a Γ-state we may, for finite U ⊂ L, write (πUℓ)(dξ) = ℓU (ξ)dξ where ℓU is
smooth on [U ]. Note that ℓU (ξ) has a (p, q)-factorization: it is the product of a smooth

function of the qx for x ∈ U , and of a Gaussian

√

β̃x/2π exp(−β̃xp2
x/2) for each x ∈ U .

* See [14] for a discussion of Gibbs states in the simpler case of spin systems. We shall
not make use of the theory of Gibbs states in the present paper.
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We shall now take X finite and Y = X ∪ X̃1 ∪ . . . ∪ X̃k̄, where

X̃k = {y ∈ L\X : d(y, X) = k}

(k̄ is thus the “size” of Y ). If ξ ∈ [X ], and ηk ∈ [X̃k] for k = 1, . . . , k̄, the Γ-state property
of ℓ then gives

ℓY (ξ, η1, . . . , ηk̄) = Ck̄.ℓ0(ξ|η1).ℓ1(η1|η2) · · · ℓk̄−1(ηk̄−1, ηk̄).ℓk̄(ηk̄)

where Ck̄ is a normalization constant and (putting W̃{x,y} = 0 if {x, y} /∈ Γ):

ℓ0(ξ|η1) = exp[−
∑

x∈X

(β̃xp2
x/2 + Ṽx(qx)) −

∑

x,y∈X

W̃{x,y}(qx, qy) −
∑

x∈X

∑

y∈X̃1

W̃{x,y}(qx, qy)]

ℓk(ηk|ηk+1) = exp[−
∑

x∈X̃k

(β̃xp2
x/2 + Ṽx(qx)) −

∑

x,y∈X̃k

W̃{x,y}(qx, qy)

−
∑

x∈X̃k

∑

y∈X̃k+1

W̃{x,y}(qx, qy)] when k > 0, and

ℓk̄(ηk̄) =

∫

ν(dηk̄+1) ℓk̄(ηk̄|ηk̄+1) for some probability measure ν on [X̃k̄+1].

Using the fact that the Jacobian of f t
U is 1 (f t

U preserves dξ) we have

f t
U ((πUℓ)(dξ)) = f t

U (ℓU (ξ)dξ) = ℓU (f−t
U ξ)dξ

Thus, by Proposition 3.2, if X ⊂ Y as above,

(πXf tℓ)(dξ) = w∗ limY →∞πX(ℓY (f−t
Y (ξ, ηY ))dξdηY )

We may write

f−t
Y (ξ, ηY ) = (f−t

Y 0(ξ, ηY ), f−t
Y 1(ξ, ηY ), . . . , f−t

Y k̄
(ξ, ηY ))

with
f−t

Y 0(ξ, ηY ) ∈ [X ], f−t
Y k(ξ, ηY ) ∈ [X̃k] for k = 1, . . . , k̄

If ξ, ξ̃ ∈ [X ], ηY ∈ [Y \X ], the quotient

ℓY (f−t
Y (ξ, ηY ))

ℓY (f−t
Y (ξ̃, ηY ))

is thus a product of quotients

ℓk(f−t
Y k(ξ, ηY )|f−t

Y (k+1)(ξ, ηY ))

ℓk(f−t
Y k(ξ̃, ηY )|f−t

Y (k+1)(ξ̃, ηY ))
for k = 0, . . . , k̄ − 1
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and
ℓk̄(f−t

Y k̄
(ξ, ηY ))

ℓk̄(f−t
Y k̄

(ξ̃, ηY ))

where the arguments f−t
Y k(ξ, ηY ), f−t

Y (k+1)(ξ, ηY ) and their derivatives have dependence on

ξ that decreases faster than exponentially with respect to k (Propositions 2.7 and 2.8).

Let us define ℓt
Y k(ξ, ηY ) by

ℓk(f−t
Y k(ξ, ηY )|f−t

Y (k+1)(ξ, ηY )) = ℓt
Y k(ξ, ηY ). exp

∑

x∈X̃k

(−β̃xpx(0)2/2)

for k = 0, . . . , k̄ − 1, where X̃k is replaced by X for k = 0, and

ℓk̄(f−t
Y k̄

(ξ, ηY )) = ℓt
Y k̄(ξ, ηY ). exp

∑

x∈X̃k̄

(−β̃xpx(0)2/2)

We shall also use ℓt
k(ξ, η) defined by

ℓk(f−t
k (ξ, η)|f−t

k+1(ξ, η)) = ℓt
k(ξ, η). exp

∑

x∈X̃k

(−β̃xpx(0)2/2)

where
f−t(ξ, η) = (f−t

0 (ξ, η), . . . , f−t
k (ξ, η), . . .)

with f−t
0 (ξ, η) ∈ [X ], and f−t

k (ξ, η) ∈ [X̃k] for k ≥ 1.

From our definitions it follows that

ℓY (f−t
Y (ξ, ηY ))

ℓY (f−t
Y (ξ̃, ηY ))

=
[

k̄
∏

k=0

ℓt
Y k(ξ, ηY )

ℓt
Y k(ξ̃, ηY )

]

· exp
∑

x∈X(−β̃xpx(0)2/2)

exp
∑

x∈X(−β̃xp̃x(0)2/2)

4.2 Lemma (basic uniform estimates).

In the above formula, we have, uniformly in t ∈ [−T, T ] and the size k̄ of Y , the
estimates

(a) | log ℓt
Y 0(ξ, ηY )| < const.(1 + sup

x∈X
|px(0)|)

(b)
∣

∣ log
ℓt
Y k(ξ, ηY )

ℓt
Y k(ξ̃, ηY )

∣

∣ <
polyn.(k)

k!
(1 + sup

x∈X̃k

|px(0)|) if k ≥ 1

These estimates remain true when ℓt
Y k is replaced by ℓt

k.
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We note that, by Lemma 2.1(a),

|px(t)2 − px(0)2| ≤ K|t|(2|px(0)| + K|t|)

From this, and the definitions, the first inequality of the lemma follows. The second
inequality is obtained by using also the finite dimensionality Assumption 1.1 and Lemma
2.1(b).

Define now the regions Ru, R×
v ⊂ [L] = [X ] × [L\X ] such that

Ru = {(ξ, η) : |px| ≤ u if x ∈ X} , R×
v = {(ξ, η) : |px| ≤ kv if x ∈ X̃k for k ≥ 1}

4.3 Lemma (existence of limit in Ru ∩ R×
v ).

In Ru ∩ R×
v , the expression

ℓY (f−t
Y (ξ, ηY ))

∫

[X]
dξ̃ ℓY (f−t

Y (ξ̃, ηY ))
· [ℓt

Y 0(ξ, ηY ) exp
∑

x∈X

(−β̃xpx(0)2/2)]−1

=
[

∫

[X]

dξ̃ [

k̄
∏

k=1

ℓt
Y k(ξ̃, ηY )

ℓt
Y k(ξ, ηY )

] ℓt
Y 0(ξ̃, ηY ) exp

∑

x∈X

(−β̃xp̃x(0)2/2)
]−1

has upper and lower bounds exp(±const.(1 + v)) uniformly in u, t ∈ [−T, T ], and k̄, and
tends when k̄ → ∞, uniformly for (ξ, η) ∈ Ru ∩ R×

v , to

[

∫

[X]

dξ̃ [
∞
∏

k=1

ℓt
k(ξ̃, η)

ℓt
k(ξ, η)

] ℓt
0(ξ̃, η) exp

∑

x∈X

(−β̃xp̃x(0)2/2)
]−1

The limit is continuous.

Let (ξ, η) ∈ Ru ∩ R×
v , and assume k̄ to be large. The quotients

ℓt
Y k(ξ̃, ηY )

ℓt
Y k(ξ, ηY )

(k ≥ 1)

are nearly independent of Y (i.e., of k̄) for small k, and (using Lemma 4.2) very close to
1 for large k, so that

lim
k̄→∞

k̄
∏

k=1

ℓt
Y k(ξ̃, ηY )

ℓt
Y k(ξ, ηY )

=
∞
∏

k=1

ℓt
k(ξ̃, η)

ℓt
k(ξ, η)

uniformly, and we have bounds exp(±const.(1 + v)) by Lemma 4.2(b). Note now that
ℓt
Y 0(ξ̃, ηY ) tends to ℓt

0(ξ̃, η) uniformly for (ξ̃, η) ∈ Ru ∩R×
v , and we can extend the integral

over ξ̃ from |px| < u to [X ] because the Gaussian

exp
∑

x∈X

(−β̃xp̃x(0)2/2)
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beats the exponential growth of ℓt
Y 0(ξ̃, ηY ) given by Lemma 4.2(a). Bounds of the form

exp(±const.(1 + v)) hold again after integration.

4.4 Lemma (large v Gaussian estimate).

For large v, (πY \Xf t
Y πY ℓ)(dηY ) has mass < exp(−const.v2) outside of πY \XR×

v , uni-
formly in the size k̄ of Y .

The (p, q)-factorization of ℓY (ξ, ηY ) shows that the mass outside of R×
v is bounded,

uniformly in k̄, by a Gaussian < exp(−const.v2) for large v. But the time evolution f t
Y

changes |px| (additively) by at most K|t|, so that the Gaussian estimate remains valid.

4.5 Theorem (Smooth density of evolved states).

Let ℓ be a Γ-state. For finite X , and Y of size k̄ as above, we write

ℓ̄t
Y X(ξ) exp

∑

x∈X

(−β̃xpx(0)2/2) =

∫

dηY ℓY (f−t
Y (ξ, ηY ))

There is a smooth function ℓ̄t
X(ξ) of ξ and t such that

(πXf tℓ)(dξ) = ℓ̄t
X(ξ) exp

∑

x∈X

(−β̃xpx(0)2/2) dξ

and we have, uniformly for |px| < u (x ∈ X) and |t| ≤ T ,

ℓ̄t
X(ξ) = lim

k̄→∞
ℓ̄t
Y X(ξ)

The limit also holds for the derivatives with respect to ξ, t. The ℓ̄t
X(ξ), ℓ̄t

Y X(ξ) have upper
and lower bounds exp(±const.(1 + u)), and the absolute values of their derivatives have
bounds polyn.(u). exp(const.(1 + u)) uniformly in t ∈ [−T, T ] and k̄.

We start with the remark that

ℓY (f−t
Y (ξ, ηY )) dξ

∫

[X]
dξ̃ ℓY (f−t

Y (ξ̃, ηY ))

is the conditional measure of f t
Y πY ℓ on [X ] given ηY ∈ [Y \X ]. Integrating this conditional

measure with respect to (πY \Xf t
Y πY ℓ)(dηY ) yields πXf t

Y πY ℓ. Thus

ℓ̄t
Y X(ξ) =

∫

(πY \Xf t
Y πY ℓ)(dηY )

ℓY (f−t
Y (ξ, ηY ))

∫

[X]
dξ̃ ℓY (f−t

Y (ξ̃, ηY ))
· exp

∑

x∈X

(β̃xpx(0)2/2)

The integrand in the right-hand side is the product of a factor controlled by Lemma 4.3,
and a factor ℓt

Y 0(ξ, ηY ) which has upper and lower bounds exp(±const.(1 + u)) uniformly
in k̄ (by Lemma 4.2(a)) and tends to ℓt

0(ξ, η) when k̄ → ∞, uniformly for (ξ, η) ∈ Ru∩R×
v .
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Using also Lemma 4.4 and the fact that πY \Xf t
Y πY ℓ has the w∗limit πL\Xf tℓ when k̄ → ∞

(Proposition 3.2) we find that
lim

k̄→∞
ℓ̄t
Y X(ξ)

=

∫

(πL\Xf tℓ)(dη) ℓt
0(ξ, η)

[

∫

[X]

dξ̃ [
∞
∏

k=1

ℓt
k(ξ̃, η)

ℓt
k(ξ, η)

] ℓt
0(ξ̃, η) exp

∑

x∈X

(−β̃xp̃x(0)2/2)
]−1

uniformly when |px(0)| ≤ u for x ∈ X , with uniform upper and lower bounds exp(±const.
(1 + u)). We call the limit ℓ̄t

X(ξ). Since

ℓ̄t
Y X(ξ) exp

∑

x∈X

(−β̃xpx(0)2/2) dξ = (πXf t
Y πY ℓ)(dξ)

has the w∗ limit (πXf tℓ)(dξ), it follows that this limit has a density

ℓ̄t
X(ξ) exp

∑

x∈X

(−β̃xpx(0)2/2)

as asserted.

Using the notation
f t(ξ̂, η) = (f t

0(ξ̂, , η), f t
ξ̂
(η))

we may write

ℓ̄t
X(ξ) =

∫

(f tℓ)(dξ̂ dη)
[

∫

[X]

dξ̃ [

∞
∏

k=1

ℓt
k(ξ̃, η)

ℓt
k(ξ, η)

] lt0(ξ̃, η) exp
∑

x∈X

(−β̃xp̃x(0)2/2)
]−1

lt0(ξ, η)

=

∫

ℓ(dξ̂ dη)
[

∫

[X]

dξ̃ [
∞
∏

k=1

ℓt
k(ξ̃, f t

ξ̂
(η))

ℓt
k(ξ, f t

ξ̂
(η))

]lt0(ξ̃, f
t
ξ̂
(η)) exp

∑

x∈X

(−β̃xp̃x(0)2/2)
]−1

lt0(ξ, f
t
ξ̂
(η))

and remember that this is the limit of a similar expression for ℓ̄t
XY (ξ). We want to

show that ℓ̄t
X(ξ) has derivatives (of all orders) with respect to ξ, t by showing that the

derivatives of ℓ̄t
XY (ξ), for ξ, t in a compact set, are bounded with respect to k̄. Note that

in estimating the integrals of polynomials in p, the px(0) integral always has a Gaussian
factor exp(−βxpx(0)2/2) (remember the (p, q) factorization of ℓ). Therefore we only have
to worry about bounding the coefficients of the polynomials.

Inspection of the above expression shows that computing a first order derivative es-
sentially involves multiplying the integrand by the logarithmic derivatives of lt0(ξ, f

t
ξ̂
(η)),

or ℓt
k(ξ̃, f t

ξ̂
(η))/ℓt

k(ξ, f t
ξ̂
(η)) and summing over k. In view of the very explicit form of the

logarithm of the ℓk, we just have to estimate the derivatives of f−t(ξ, f t
ξ̂
(η)) with respect

to ξ and t.

As far as ℓt
0(ξ, f

t
ξ̂
(η)) is concerned, we have to consider the derivatives of f−t

0 (ξ, f t
ξ̂
(η))

(or f−t
1 (ξ, f t

ξ̂
(η)), which is similar). The ξ-derivative is of the form r

(0,1)
x (−t; x1) with
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x, x1 ∈ X , giving a bounded contribution by Proposition 2.7. The t-derivative is of the
form

r(1,0)
x (−t) +

∑

x1

r(0,1)
x (−t; x1)r

(1,0)
x1

(t)

with x ∈ X , and we may take x1 ∈ X̃k1
. By Proposition 2.7, |r(0,1)(±t)| is bounded by a

polynomial in p with bounded coefficients, and r
(0,1)
x (−t; x1) ≤ const./k1!, again giving a

bounded contribution because
∑

k1
|X̃k1

|/k1! is bounded.

We turn now to ℓt
k(ξ̃, f t

ξ̂
(η))/ℓt

k(ξ, f t
ξ̂
(η)), i.e., we have to consider the derivatives of

f−t
k (ξ, f t

ξ̂
(η)) (or f−t

k+1). The ξ-derivative is of the form r
(0,1)
x (−t; x1) with x ∈ X̃k, x1 ∈ X ,

so that |r(0,1)
x (−t; x1)| ≤ const./d(x, x1)! = const./k!, which makes a bounded contribution

because
∑

k |X̃k|/k! is bounded. The t-derivative is of the form

∆r(1,0)
x (−t; X) +

∑

x1

∆r(0,1)
x (−t; x1; X)r(1,0)

x1
(t)

where x ∈ X̃k and we may take x1 ∈ X̃k1
. By Proposition 2.8 we have

|∆r(1,0)
x (−t; X)| ≤ polyn.(p)/k!

|∆r(0,1)
x (−t; x1; X)| ≤ const./σ! ≤ const./ max(k, k1)!

and since
∑

k |X̃k|/k!,
∑

k,k1
|X̃k|.|X̃k1

|/ max(k, k1)! are bounded, we also have bounded
contributions for the t-derivative.

We consider now higher order derivatives with respect to ξ, t. The computation of
such a derivative gives terms where the integrand is multiplied by a product of logarith-
mic derivatives of the type discussed above; the contribution is again seen to be bounded.
There are also terms containing derivatives of the logarithmic derivatives, and these are
expressed in terms of higher order derivatives of f−t(ξ, f t

ξ̂
(η)) with respect to ξ, t. The

derivative ∂j/∂ξx1
· · ·∂ξxj

is estimated by |r(0,j)
x (−t; x1, . . . , xj)| ≤ const./d(x, X)! giving a

bounded contribution. The derivative ∂i/∂ti is a sum of terms ∆r
(i1,i2)
x (−t; y1, . . . , yi2 ; X)

(multiplied by derivatives ∂kf t
ξ̂
/∂tk = r(k,0)), where i1 + i2 = i; these terms can be esti-

mated by Proposition 2.8, and give a bounded contribution. The general mixed derivative

∂i+j/∂ti∂ξx1
· · ·∂ξxj

, with j ≥ 1, is a sum of terms r
(i1,j+i2)
x (−t; x1, . . . , xj, y1, . . . , yi2)

with x1, . . . , xj ∈ X (multiplied by derivatives of the form r(k,0)) which can be estimated
by Proposition 2.7, and give a bounded contribution.

4.6 Remark (uniform bounds).

The proof of Theorem 4.5 gives estimates of ℓ̄t
Y X(ξ) and its derivatives with respect

to t and ξ, which are uniform with respect to the size k̄ of Y . They are also uniform with
respect to the Γ-states ℓ with conditional measures corresponding to a fixed choice of β̃x,
Ṽx, W̃{x,y}, and remain uniform if some of the W̃{x,y} are replaced by 0.
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For Y finite and η = (px, qx)x∈Y define

ℓ̃Y (η) = Z−1
Y exp[−

∑

x∈Y

(
1

2
β̃xp2

x + Ṽx(qx)) −
∑

x,y∈Y

W̃{x,y}(qx, qy)]

where Z−1
Y is a normalization factor, and write

¯̃
ℓ
t

Y X(ξ) exp
∑

x∈X

(−β̃xpx(0)2/2) =

∫

[Y \X]

dηY ℓ̃Y (f−t
Y (ξ, ηY ))

Then the above remarks show that the uniform estimates on ℓ̄t
Y X(ξ) and its derivatives

given by Theorem 4.5 can be taken to hold also for
¯̃
ℓ
t

Y X .

5 Entropy.

Given a Γ-state ℓ, and X ⊂ Y finite, we write

πXf t
Y πY ℓ = ℓt

Y X(ξ) dξ , πXf tℓ = ℓt
X(ξ) dξ

where (t, ξ) 7→ ℓt
Y X(ξ), ℓt

X(ξ) are smooth on R × [X ].

In Theorem 4.5, we used the notation

ℓt
Y X(ξ) = ℓ̄t

Y X(ξ) exp
∑

x∈X

(−β̃xpx(0)2/2) , ℓt
X(ξ) = ℓ̄t

X(ξ) exp
∑

x∈X

(−β̃xpx(0)2/2)

and saw that ℓ̄t
Y X(ξ) tends to ℓ̄t

X(ξ) together with its derivatives, uniformly on compacts
of R × [X ], when Y → ∞.

We can now define a (Gibbs) entropy St
Y (X) or St(X) by

St
Y (X) = −

∫

[X]

ℓt
Y X(ξ) log ℓt

Y X(ξ) dξ , St(X) = −
∫

[X]

ℓt
X(ξ) log ℓt

X(ξ) dξ

These are convergent integrals in view of the uniform bounds given in Theorem 4.5. Fur-
thermore St

Y (X) → St(X), uniformly for |t| ≤ T , when Y → ∞.

We may assume that Y ⊃ X̃1 = {y ∈ L : dist(y, X) = 1}. If ξ ∈ [X ], η ∈ [Y \X ]
or [L\X ], let η1 ∈ X̃1 be obtained from η by restricting the index set to X̃1. Then the
equations of motion for ξ, η show that we may write

dξ

dt
= X (ξ, η1) ,

dη

dt
= Y(ξ, η)

where X does not depend on Y . Writing ℓ̂t
Y = ℓY ◦ f−t

Y , we have

ℓt
Y X(ξ) =

∫

[Y \X]

dη ℓ̂t
Y (ξ, η)
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and the “continuity equation”

d

dt
ℓ̂t
Y (ξ, η) + ∇ξ · (ℓ̂t

Y (ξ, η)X (ξ, η1)) + ∇η · (ℓ̂t
Y (ξ, η)Y(ξ, η)) = 0

so that

d

dt
ℓt
Y X(ξ) = −

∫

[Y \X]

dη∇ξ · (ℓ̂t
Y (ξ, η)X (ξ, η1)) = −∇ξ ·

∫

[Y \X]

dη ℓ̂t
Y (ξ, η)X (ξ, η1)

d

dt
log ℓt

Y X(ξ) = − 1

ℓt
XY (ξ)

∇ξ ·
∫

[Y \X]

dη ℓ̂t
Y (ξ, η)X (ξ, η1)

d

dt
[ℓt

Y X(ξ) log ℓt
Y X(ξ)] = −(log ℓt

Y X(ξ) + 1)∇ξ ·
∫

[Y \X]

dη ℓ̂t
Y (ξ, η)X (ξ, η1)

Using the estimates of Theorem 4.5 we find that t 7→ St
Y (X) is a smooth function of

t, with
d

dt
St

Y (X) =

∫

[X]

dξ log ℓt
Y X(ξ)∇ξ ·

∫

[Y \X]

dη ℓ̂t
Y (ξ, η)X (ξ, η1)

= −
∫

[X]

dξ

ℓt
Y X(ξ)

(∇ξℓ
t
Y X(ξ)) ·

∫

[Y \X]

dη ℓ̂t
Y (ξ, η)X (ξ, η1)

Write now X+ = X ∪ X̃1 = {y ∈ L : d(y, X) ≤ 1}. The probability measure

ℓt
Y X+(ξ, η1) dξ dη1

conditioned on ξ ∈ [X ] is denoted by ℓt
Y X+(η1|ξ) dη1 where

ℓt
Y X+(η1|ξ) =

ℓt
Y X+(ξ, η1)

ℓt
Y X(ξ)

Theorem 4.5 gives uniform estimates for

ℓt
Y X+(η1|ξ) , ∇ξℓ

t
Y X+(η1|ξ)

so that
d

dt
St

Y (X) = −
∫

[X]

dξ ∇ξℓ
t
Y X(ξ) ·

∫

[X̃1]

dη1 ℓt
Y X+(η1|ξ)X (ξ, η1)

=

∫

[X]

dξ ℓt
Y X(ξ)∇ξ ·

∫

[X̃1]

dη1 ℓt
Y X+(η1|ξ)X (ξ, η1)

It follows also that, when Y → ∞, dSt
Y (X)/dt tends to

∫

[X]

dξ ℓt
X(ξ)∇ξ ·

∫

[X̃1]

dη1 ℓt
X+(η1|ξ)X (ξ, η1)
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uniformly for |t| ≤ T , and the limit is dSt(X)/dt.

5.1 Proposition (time derivative of S(X), X finite).

When Y → ∞, the derivative dSt
Y (X)/dt tends, uniformly for |t| ≤ T , to

d

dt
St(X) =

∫

[X]

dξ ℓt
X(ξ)∇ξ ·

∫

[X̃1]

dη1 ℓt
X+(η1|ξ)X (ξ, η1)

which is a smooth function of t.

The proof, as given above, is essentially a corollary of Theorem 4.5.

Suppose now that X̃1 = {y ∈ L : d(x, y) = 1} is finite, but X is not necessarily finite.
We still have, for Y finite,

d

dt
St

Y (X ∩ Y ) =

∫

[X∩Y ]

dξ ℓt
Y,X∩Y (ξ)∇ξ ·

∫

[X̃1]

dη1 ℓt
Y,X+∩Y (η1|ξ)X (ξ, η1)

and this can be bounded independently of Y .

5.2 Proposition (time derivative of ∆St(X)).

If X ⊂ L, and X is not necessarily finite, but X̃1 = {y ∈ L : d(X, y) = 1} is finite, we
may define

∆St(X) = lim
Y →∞

(St(X ∩ Y ) − S0(X ∩ Y ))

and we have

d

dt
∆St

Y (X) =

∫

[X]

(πXf tℓ)(dξ)∇ξ ·
∫

[X̃1]

dη1 ℓt
X+(η1|ξ)X (ξ, η1)

which is a smooth function of t.

This follows from the usual estimates. Note that ∇ξ is a derivative with respect to a
finite number of variables corresponding to nonzero components of X (ξ, η1).

We shall now study a conditional, or ”external” entropy Š defined for X finite by

Št
Y (X) = St

Y (Y ) − St
Y (Y \X)

Using the notation

ℓ̂t
Y = ℓY ◦ f−t

Y , ℓY,Y \X(η) =

∫

[X]

dξ ℓ̂t
Y (ξ, η) , ℓt

Y X(ξ|η) =
ℓ̂t
Y (ξ, η)

ℓY,Y \X(η)

as above, we find

Št
Y (X) = −

∫

dξ dη ℓ̂t
Y (ξ, η) log

ℓ̂t
Y (ξ, η)

ℓY,Y \X(η)
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=

∫

ℓY,Y \X(η) dη[−
∫

dξ ℓt
Y X(ξ|η) log ℓt

Y X(ξ|η)] =

∫

ℓY,Y \X(η) dη St
Y (X |η)

where we have written

St
Y (X |η) = −

∫

dξ ℓt
Y X(ξ|η) log ℓt

Y X(ξ|η)

Let also

ℓt
X(ξ|η) = [

∫

[X]

dξ̃[

∞
∏

k=1

ℓt
k(ξ̃, η)

ℓt
k(ξ, η)

]ℓt
0(ξ̃, η) exp

∑

x∈X

(−β̃xp̃x(0)2/2)]−1

×ℓt
0(ξ, η) exp

∑

x∈X

(−βxpx(0)2/2)

St(X |η) = −
∫

dξ ℓt
X(ξ|η) log ℓt

X(ξ|η)

then Lemma 4.2(a) and Lemma 4.3 imply that St
Y (X |η) → St(X |η) when Y → ∞, uni-

formly for η ∈ πL\XR×
v and t ∈ [−T, T ], and with uniform bounds

|St
Y (X |η)| ≤ const.(1 + v)

Therefore (using Lemma 4.4 and Proposition 3.2)we see that when Y → ∞ we have

Št
Y (X) → Št(X)

uniformly for t ∈ [−T, T ], where

Št(X) =

∫

(πL\Xf tℓ)(dη) St(X |η)

Note that Št(X) is obtained by taking the mean entropy St(X |η) associated with ℓt
X(ξ|η)

and averaging over η, while St(X) is the entropy associated with the average ℓX(ξ) of
ℓt
X(ξ|η) over η. In particular, concavity gives Št(X) ≤ St(X).

Since dSt
Y (Y )/dt = 0, we have

d

dt
Št

Y (X) = − d

dt
St

Y (Y \X)

= −
∫

[Y \X]

dη ℓt
Y,Y \X(η)∇η ·

∫

[X]

dξ ℓt
Y X(ξ|η)Y(ξ, η)

= −
∫

[Y \X]

dη ℓt
Y,Y \X(η)

∑

y∈X̃1

∂ηy
·
∫

[X]

dξ ℓt
Y X(ξ|η)Yy(ξ, η)

where X̃1 = {y ∈ Y : d(y, X) = 1} and Yy is the y-component of Y . We may now let
Y → ∞, finding:
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5.3 Proposition (time derivative of the entropy Š).

When Y → ∞, the derivative dŠt
Y (X)/dt tends, uniformly for t ∈ [−T, T ], to

d

dt
Št(X) = −

∫

(πL\Xf tℓ)(dη)
∑

y∈X̃1

∂ηy
·
∫

[X]

dξ ℓt
X(ξ|η)Yy(ξ, η)

which is a smooth function of t.

This is again a corollary of Theorem 4.5.

Note that
d

dt
Št(X) = − d

dt
∆St(L\X)

5.4 Assumption (bounded energy).

For every finite X ⊂ L the kinetic energy is bounded independently of t:

∫

dξ ℓt
X(ξ)p2

X/2 ≤ const.(X)

[it would be equivalent to assume a bound on the total energy HX ].

We have the general inequality

St(X) ≤
∫

dξ ℓt
X(ξ)p2

X/2 + |X | log
√

2π

[this follows from the “variational principle for the free energy”, and can be proved by
using the concavity of the log:

∫

dξ ℓt
X(ξ) log

e−p2
X/2

ℓt
X(ξ)

≤ log

∫

dξ e−p2
X/2 = |X | log

√
2π ]

Therefore the bounded energy assumption gives a bound on the entropy:

St(X) ≤ const.(X)

Similarly, we find

St(X |η) ≤
∫

dξ ℓt
X(ξ|η)p2

X/2 + |X | log
√

2π

hence

Št(X) ≤
∫

dξ ℓt
X(ξ)p2

X/2 + |X | log
√

2π ≤ const.(X)

In particular we have Št(X) ≤ St(X) ≤ const.(X).

5.5 Definitions (large volume limit).
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We may take a sequence (Tn) tending to +∞ such that
1

Tn

∫ Tn

0

dt f tℓ has a limit ρ

in the vague topology of measures on [L̇]:

tn → ∞ ,
1

Tn

∫ Tn

0

dt f tℓ → ρ

We call the probability measure ρ a nonequilibrium steady state (NESS). In view of As-
sumption 5.4, ρ is carried by [L]. Furthermore ρ is invariant under (f t).

We can also (by going to a subsequence) assume that

∆STn(X)

Tn
=

1

Tn

∫ Tn

0

dt
d

dt
∆St(X) → σ(X)

when X̃1 = {y ∈ L : d(X, y) = 1} is finite (X need not be finite). Note that σ(X) might
not be determined by ρ and X .

For notational simplicity we shall write T → ∞ instead of Tn, n → ∞.

5.6 Interpretation (entropy production). [16]

As mentioned in the Introduction, Denis Evans and coworkers [16] have proposed to
identify the mean entropy production rate in a finite region X to

e(X) = −σ(X) = − lim
T→∞

ST (X) − S0(X)

T

According to Proposition 5.1 this is the mean rate of volume contaction in [X ], and e(X)
corresponds to the accepted definition of entropy production in the presence of a deter-
ministic thermostat.

A related choice is

ě(X) = σ(L\X) = − lim
T→∞

ŠT (X) − Š0(X)

T

This is the mean rate of volume expansion in [L\X ], and corresponds to the rate of entropy
growth due to X , as seen by the ”external world” L\X .

Since Št(X) ≤ St(X) ≤ const.(X), we have 0 ≤ e(X) ≤ ě(X).

We may also define mean entropy production rates associated with a finite partition
A = (X0, X1, . . . , xn) of L provided X0, X1, . . . , Xn have finite ”boundaries” {y ∈ L :
d(Xi, y) = 1}. We write

e(A) =
n

∑

j=0

σ(Xj) , ě(A) =
∑

j:Xj infinite

σ(Xj)
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In particular, in Case II, for X finite ⊃ X0, we have

ě(X) = ě((X, L\X)) ≤ ě((X, L1\X, L2\X))

We proceed now with some general inequalities satisfied by σ, e, and ě.

5.7 Basic inequalities.

We have e(∅) = ě(∅) = 0 by definition, and remember that 0 ≤ e(X) ≤ ě(X). The
strong subadditivity of the entropy implies that, if U , V have finite boundaries,

σ(U ∪ V ) − σ(U) − σ(V ) + σ(U ∩ V ) ≤ 0

(we have used the fact that S0((U ∪ V ) ∩ Y ) − S0(U ∩ Y ) − S0(V ∩ Y ) + S0(U ∩ V ∩
Y ) is bounded independently of Y ). This implies the strong superadditivity of e, and
subadditivity of ě. In particular

e(U ∪ V ) ≥ e(U) + e(V ) if U ∩ V = ∅

and
ě(U ∪ V ) ≤ ě(U) + ě(V )

If U ⊂ V we also have*

e(U) ≤ e(V ) , ě(U) ≤ ě(V )

i.e., e(X), ě(X) are increasing functions of X .

We can extend the definition of e(X), ě(X) to infinite X :

e(X) = sup
finite U⊂X

e(U) , ě(X) = sup
finite U⊂X

ě(U)

In the situations of interest for us ě(L) will be finite and we may call this quantity the total

entropy production rate. Note that the entropy production rate ě(X) is not an additive
function of X , but that its subadditivity amounts to some kind of locality. Note also that
if e(X) > 0 we must have ST (X) → −∞, in particular the ℓT

X cannot remain bounded
when T → ∞, contrary to some evidence [4], [5]. But there is no obvious objection to
having an entropy production rate ě(X) > 0.

6 Thermodynamic bound on entropy production.

We shall show that in Case I (an external force and a thermostat at temperature β−1)
we have

ě(X) ≤ β × energy flux to thermostat

* Note that, for U ⊂ V , we have ST
Y (Y \U) ≤ ST

Y (Y \V ) + ST
Y (V \U), hence ŠT

Y (V ) ≤
ŠT

Y (U) + ST
Y (V \U), hence ě(V ) ≥ ě(U) + e(V \U).
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where the right-hand side is the thermodynamic rate of entropy production. A more
general result is given below (see Proposition 6.3).

In Case I we have introduced a finite set X0 on which external forces act. As initial
state ℓ we shall use the thermodynamic limit of a sequence:

ℓ = θ limY →∞ℓ̃Y (η) dη

where*
ℓ̃Y (η) = Z−1

Y exp[−H̃X0
− βHY \X0

]

In this formula,

H̃X0
=

∑

x∈X0

(
1

2
β̃xp2

x + Ṽx) +
∑

x,y∈X0

W̃{x,y}

HY \X =
∑

x∈Y \X

(
1

2
p2

x + Vx) +
∑

x,y∈Y \X

W{x,y}

and Z−1
Y is a normalization factor. In this section it will be convenient to use X0 instead

of X in the definition of Y , so that Y = X0 ∪ X̃1 ∪ . . . ∪ X̃k̄. We take X of the form
X0 ∪ X̃1 ∪ . . . ∪ X̃k (this is no serious restriction) and choose a subsequence k̄ → ∞
such that the πXY (ℓ̃Y (η) dη) converge vaguely (we use here the thermodynamic limit for
a sequence as explained in Section 3).

The state ℓ is a Γ-state corresponding to the choice β̃x = β, Ṽx = βVx for x /∈ X0,
and W̃{x,y} = βW{x,y} for x, y /∈ X0. We define

ℓ̃t
Y X(ξ) =

∫

[Y \X]

ℓ̃Y (f−t
Y (ξ, ηY )) dηY

and

S̃t
Y (X) = −

∫

[X]

ℓ̃t
Y X(ξ) log ℓ̃t

Y X(ξ) dξ , ˇ̃S
t

Y (X) = S̃t
Y (Y ) − S̃t

Y (Y \X)

Writing
ℓ̃t
Y X(ξ|η) = ℓ̃t

Y Y (ξ, η)/ℓ̃Y,Y \X(η)

S̃t
Y (X |η) = −

∫

dξ ℓ̃t
Y X(ξ|η) log ℓ̃t

Y X(ξ|η)

we find
ˇ̃S

t

Y (X) =

∫

ℓ̃t
Y,Y \X(η)dη S̃t

Y (X |η)

* More generally we could allow a term
∑

x∈X0,y/∈X0
W̃{x,y} of interaction between X0

and Y \X0.
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6.1 Lemma (thermodynamic limit for ˇ̃S).

ˇ̃S
t

Y (X) → Št(X)

together with the t-derivatives, uniformly for t ∈ [−T, T ], when k̄ → ∞.

We have shown (in the proof of Proposition 5.2) how Št
Y (X) → Št(X). We proceed

in the same way here, using the uniform estimates of Theorem 4.5 which hold again when
ℓ is replaced by ℓ̃, as explained in Remark 4.6.

Since f t
Y is volume preserving in [Y ] we have

S̃t
Y (Y ) = S̃0

Y (Y )

therefore
ˇ̃S

0

Y (X) − ˇ̃S
t

Y (X) = S̃t
Y (Y \X) − S̃0

Y (Y \X)

We fix now X , with X0 ⊂ X ⊂ Y as indicated above. Note that, by the (p, q) factorization,
S̃0

Y (Y \X0) = S̃Y \X0
(Y \X0) is the sum of a momentum term S̃0p (integral over p, trivial)

and a configuration term S̃0q (integral over q). The configuration part ℓ̃q
Y,Y \X(qY \X) of

ℓ̃Y,Y \X(qY \X) differs from ℓ̃Y,Y \X0
(qY ) = ℓ̃q

Y \X0
(qX\X0

(qY \X) by a factor bounded inde-

pendently of Y (because there is a finite number of bounded terms Ṽx and W̃{x,y} with

x ∈ X\X0). Therefore | log ℓ̃q
Y,Y \X(qY \X)− log ℓ̃q

Y \X0
(qY )| is bounded independently of Y ,

hence |S̃0
Y (Y \X0) − S̃0

Y (Y \X)| ≤ C0 with C0 independent of Y . Define now a function ℓ∗

on [Y \X0] = [X\X0] × [Y \X ] to be the product of

Z−1 exp(−βp2
X\X0

/2)

on [X\X0] (with Z−1 a normalization factor) and ℓ̃t
Y,Y \X on [Y \X ]. Then there is a

constant C1 such that

S∗ = −
∫

[Y \X0]

dη ℓ∗(η) log ℓ∗(η) = S̃t
Y (Y \X) + C1

and the “variational principle for the free energy” gives

S∗ − S̃0
Y (Y \X0) ≤

∫

[Y \X0]

dη (ℓ∗(η) − ℓ̃Y \X0
(η)) βHY \X0

(η)

so that

S̃t
Y (Y \X) − S̃0

Y (Y \X) ≤ C0 − C1 + S∗ − S̃0
Y (Y \X)

≤ C0 − C1 +

∫

[Y \X0]

dη (ℓ∗(η) − ℓ̃Y \X0
(η)) βHY \X0

(η)
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There are also constants C2, C3 such that

∫

[Y \X0]

dη ℓ∗(η)βHY \X0
(η) ≤

∫

[Y \X]

dη ℓ̃t
Y,Y \X(η)βHY \X(η) + C2

∫

[Y \X0]

dη ℓ̃Y \X0
(η)) βHY \X0

(η) ≥
∫

[Y \X]

dη ℓ̃0
Y,Y \X(η)βHY \X(η) + C3

Therefore, with a constant C = C0 − C1 + C2 − C3 independent of Y and t, we have

ˇ̃S
0

Y (X) − ˇ̃S
t

Y (X) ≤ C +

∫

[Y \X]

dη[ℓ̃t
Y,Y \X(η) − ℓ̃0

Y,Y \X(η)]βHY \X(η)

= C + β

∫

[Y ]

dη [ℓ̃t
Y (η) − ℓ̃0

Y (η)]HY \X(η)

= C + β

∫

[Y ]

dη ℓ̃0
Y (η)[HY \X(f t

Y η) − HY \X(η)]

= C + β

∫

[Y ]

dη ℓ̃0
Y (η)

∫ t

0

dτ
d

dτ
HY \X(f τ

Y η)

The equations of motion yield

d

dτ
HY \X(f τ

Y η) = Φ(πX+,Y f τ
Y η)

where X+ = {x ∈ L : d(x, X) ≤ 1} and Φ(pY , qY ) is given by

Φ = −
∑

x∈X

∑

y/∈X

py
∂

∂qy
W{x,y}(qx, qy)

Therefore

∫

[Y ]

dη ℓ̃0
Y (η)

∫ t

0

dτ Φ(πX+,Y f τ
Y η) =

∫ t

0

dτ

∫

[Y ]

dη ℓ̃τ
Y (η)Φ(πX+,Y η)

=

∫ t

0

dτ

∫

[X+]

dξ ℓ̃τ
Y X+(ξ)Φ(ξ)

so that
ˇ̃S

0

Y (X) − ˇ̃S
t

Y (X) ≤ C + β

∫ t

0

dτ

∫

[X+]

dξ ℓ̃τ
Y X+(ξ)Φ(ξ)

We may now let Y → ∞, obtaining

Š0(X) − Št(X) ≤ C + β

∫ t

0

dτ

∫

[X+]

dξ ℓτ
X+(ξ)Φ(ξ)
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6.2 Proposition (bound on entropy production, Case I).

In case I the mean rate of entropy production of the finite set X is ≤ β×energy flux
out of X0:

0 ≤ ě(X) ≤ β

∫

(πX0+ρ)(dξ)Φ0(ξ)

where Φ0 is the function Φ computed for X = X0.

It suffices to consider the case of large X , so we assume X ⊃ X0. Taking in the
previous inequality the large time limit described in 5.4 we obtain

0 ≤ ě(X) ≤ β

∫

(πX+ρ)(dξ) Φ(x)

where the right-hand side is independent of X , and we may thus take X = X0.

We now give without proof a general bound on σ(X), which can be obtained using
the same ideas as for Proposition 6.2.

6.3 Proposition. (bound on σ(X)).

Let X be infinite, with finite ”boundary” X̃1 = {y ∈ L : d(X, y) = 1}. we let the
initial state ℓ be the thermodynamic limit of a sequence:

ℓ = θ limY →∞ℓ̃Y (η) dη

where
ℓ̃Y (η) = Z−1

Y e−H̃Y

H̃Y =
∑

x∈Y

(
1

2
β̃xp2

x + Ṽx) +
∑

x,y∈Y

W̃{x,y}

We assume that

β̃x = β , Ṽx = βVx , W̃{x,y} = βW{x,y}

when x, y ∈ X , i.e., X is a thermostat at temperature β−1. Then

σ(X) ≤ β × energy flux to X

Note that if the energy flows out of X , then σ(X) < 0, and in particular σ(X) does
not vanish. Applications of Proposition 6.3, in particular to Case II, are left to the reader.
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A Appendices.

A.1 (proof of Proposition 2.7).

By uniformity of the bounds it suffices to consider the situation when Y is finite. The
case (i, j) = (0, 0) follows from Lemma 2.1(a), with τ = σ = 0.

Differentiating the time evolution equation for ηx(t) = (px(t), qx(t)), we find

d

dt
r(0,1)
x =

∑

y∈B1
x

Φxy(qx, qy)r
(0,1)
y

where Φxy depends smoothly on the q’s, is independent of the p’s, and there is a uniform
bound

∑

y

|Φxy| ≤ K̄

Therefore, if r(t) = supx,x1∈Y |r(0,1)
x (t; x1)|, we have

| d

dt
r(t)| ≤ K̄r(t)

with r(0) = 1, so that |r(0,1)
x (t; x1)| ≤ r(t) ≤ eK̄|t|.

With the notation k = d(x, x1) we claim that

|r(0,1)
x (t; x1)| ≤ {eK̄|t|}k

where we have defined {eu}k = eu −∑k−1
n=0 un/n! ≤ eu infℓ≤k uℓ/ℓ! For k = 0 the claim has

been proved above. For k > 0 we have by induction

| d

dt
r(0,1)
x (t; x1)| ≤ K̄{eK̄|t|}k−1

and our claim follows by integration, using r
(0,1)
x (0, x1) = 0.

Remember that σ(x, x1, . . . , xj) is the smallest length of a subgraph of Γ connecting
x, x1, . . . , xj. We claim that for j ≥ 1 there are constants Lj > 0 and Mj > 0 such that

|r(0,j)
x (t; x1, . . . , xj)| ≤ Mje

jK̄|t| inf
0≤τ≤σ

(Lj |t|)τ

τ !
(1)

where σ = σ(x, x1, . . . , xj).

We have already proved (1) for j = 1, with L1 = K̄, M1 = 1. For j > 0 we have

d

dt
r(0,j)
x (t; x1, . . . , xj) =

∑

y∈B1
x

Φxyr(0,j)
y (t; x1, . . . , xj) + rest (2)
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The rest is a sum, over y ∈ B1
x and X , of products of factors r

(0,jn)
zn (t; Xn) where zn is x

or y, X = (Xn) is a partition of (x1, . . . , xj) into |X | > 1 subsequences of length jn, and
each product has a coefficient which is a smooth function of qx, qy. Thus

|rest| ≤ Cj max
X

exp(
∑

n

jnK̄|t|)
∏

n

(Ljn
|t|)τn

τn!
≤ Cje

jK̄|t|
(L′

j |t|)τ ′

τ ′!

where L′
j = maxX

∑

n Ljn
and τ ′ must be of the form

∑

n τn, i.e., 0 ≤ τ ′ ≤ ∑

n σ(zn, Xn)
where each zn is either x or y, and therefore

∑

n

σ(zn, Xn) + 1 ≥ σ(x, x1, . . . , xj) = σ

so that all values of τ ′ between 0 and [σ − 1]+ are allowed. We have thus

|rest| ≤ Cje
jK̄|t| inf

0≤τ ′≤[σ−1]+

(L′
j|t|)τ ′

τ ′!

We shall prove (1) by induction on j, assuming now j > 1. First let us write

sup
x

|r(0,j)
x (t; x1, . . . , xj)| = r(t : x1, . . . , xj) = eK̄|t|s(t)

and let
σ′ = σ(x1, . . . , xj) = min

x
σ(x, x1, . . . , xj)

Then, for 0 ≤ τ ′ ≤ [σ′ − 1]+ and t ≥ 0,

d

dt
r(t; x1, . . . , xj) ≤ K̄r(t; x1, . . . , xj) + Cje

jK̄t
(L′

jt)
τ ′

τ ′!

or
d

dt
s(t) ≤ Cje

(j−1)K̄t
(L′

jt)
τ ′

τ ′!

Thus
ds

dt
≤ d

dt
[e(j−1)K̄t

(Cjt)(L
′
jt)

τ ′

(τ ′ + 1)!
] for 0 ≤ τ ′ ≤ σ′ − 1

and also (taking τ ′ = 0)
ds

dt
≤ d

dt

Cj

(j − 1)K̄
e(j−1)K̄t

We shall take Lj = L′
j +Cj and Mj = 1 +Cj/L′

j +Cj [(j − 1)K̄]−1. In particular, we have

s(t) ≤ Mje
(j−1)K̄t

(L′
jt)

τ ′+1

(τ ′ + 1)!
for 0 ≤ τ ′ ≤ σ′ − 1
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s(t) ≤ Mje
(j−1)K̄t

hence

s(t) ≤ Mje
(j−1)K̄t inf

0≤τ≤σ′

(L′
jt)

τ

τ !

and

|r(0,j)
x (t : x1, . . . , xj)| ≤ Mje

jK̄|t| inf
0≤τ≤σ′

(L′
j|t|)τ

τ !

To prove (1), it suffices to show that if

σ(x, x1, . . . , xj) ≥ σ′ + k

then

|r(0,j)
x (t; x1, . . . , xj)| ≤ Mje

jK̄|t| inf
0≤τ≤σ′+k

(Lj |t|)τ

τ !

and we have just shown this for k = 0. We proceed now by induction on k for k > 0. For
y ∈ B1

x we have

σ(y, x1, . . . , xj) ≥ σ(x, x1, . . . , xj) − 1 ≥ σ′ + k − 1

Therefore, our induction asssumption and estimate of |rest| give

| d

dt
r(0,j)
x (t; x1, . . . , xj)| ≤ K̄Mje

jK̄|t| inf
0≤τ ′≤σ′+k−1

(Lj|t|)τ ′

τ ′!
+ Cje

jK̄|t| inf
0≤τ ′≤σ′+k−1

(L′
j|t|)τ ′

τ ′!

Since Lj = L′
j + Cj ≥ Cj + K̄, and 1 ≤ Mj , we may write for t ≥ 0,

d

dt
|r(0,j)

x (t; x1, . . . , xj)| ≤ Mje
jK̄|t| inf

0≤τ ′≤σ′+k−1
Lj

(Ljt)
τ ′

τ ′!

hence

|r(0,j)
x (t; x1, . . . , xj)| ≤ Mje

jK̄|t| (Ljt)
τ

τ !

if 1 ≤ τ ≤ σ′ + k, but the above inequality also holds by the induction assumption when
τ = 0, and this completes the proof of (1).

We discuss now the case i > 0. We have an explicit expression for r(1,j) = dr(0,j)/dt,
given by the evolution equation for (p, q) if j = 0, by (2) if j ≥ 1. We may differentiate
repeatedly with respect to t, replacing the derivatives in the right-hand side by using either
the evolution equation for (p, q) or (2). We express thus r(i,j) as a polynomial in the py

and the r
(0,ℓ)
y with ℓ ≤ j, with coefficients that are smooth functions of the qy. The indices

y of the py, qy, and r
(0,ℓ)
y that occur satisfy d(x, y) ≤ i. Furthermore, in any given term

of the polynomial, the factors r
(0,ℓ1)
y1

(X1), . . . , r
(0,ℓm)
ym (Xm) that occur (with (X1, . . . , Xm)

forming a partition of (x1, . . . , xj)) satisfy

σ(x, y1, . . . , ym) ≤ i
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σ(x, y1, . . . , ym) + σ(y1, X1) + . . . + σ(ym, Xm) ≥ σ(x, x1, . . . , xj) = σ

so that
σ(y1, X1) + . . . + σ(ym, Xm) ≥ σ − i

Therefore, using (1), we see that r(i,j) is a polynomial of degree ≤ i in the py such that
y ∈ Bi

x, with coefficients bounded in absolute value by

const.ejK̄|t| inf
0≤τ≤σ−i

(Lj|t|)τ

τ !

if i ≤ σ, otherwise by
const.ejK̄|t|

concluding the proof of the proposition.

A.2 (proof of Proposition 2.8).

Note that the conditions on the coefficients of Q are of the same form as those on the
coefficients of P in Proposition 2.7, but σ has a new definition (and the Lj , Mij may have
to be chosen larger than for Proposition 2.7).

Note also that Lemma 2.1(b) gives, for d(x, X) > 0,

|∆r(0,0)
x (t; X)| ≤ (K̄|t|)τ

τ !
if 1 ≤ τ ≤ d(x, X)

Using also Lemma 2.1(a), this proves the Proposition in the case (i, j) = (0, 0) since here
σ = d(x, X).

We shall later use the fact that for the q-component we have actually, for d(x, X) ≥ 0,

|∆qx(t; X)| = |qx(t) − q̃x(t)| ≤ (K̄|t|)τ

τ !
if 0 ≤ τ ≤ d(x, X)

[this is because qx(t), q̃x(t) ∈ T, so that |qx(t) − q̃x(t)| ≤ 1].

In the study of ∆r
(0,j)
x for j > 0 we do not impose the condition d(x, X) > 0. If j > 0,

we claim that there are constants Lj > 0 and Mj > 0 such that

|∆r(0,j)
x (t; x1, . . . , xj; X)| ≤ Mje

jK̄|t| inf
0≤τ≤σ

(Lj|t|)τ

τ !
(3)

where σ = σ(x, x1, . . . , xj; X).

This will be proved by induction on j, using (1) and the equation

d

dt
∆r(0,j)

x (t; x1, . . . , xj; X) =
∑

y∈B1
x

Φxy(qx, qy)∆r(0,j)
y (t; x1, . . . , xj; X) + rest
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The rest here is a finite sum of products, each of which has exactly one factor with a
∆ in front of it. The factors are: a coefficient depending smoothly on qx, qy, and factors

r
(0,jn)
zn where zn is x or y and the Xn form a partition X = (Xn) of (x1, . . . , xj) into |X |

subsequences of length jn.

In particular, for j = 1, the rest is
∑

y ∆Φxy.r
(0,1)
y . Using the remark above on |∆qx|,

and the earlier bound on |r(0,1)
x | one finds

|rest| ≤ const.
(K̄|t|)k

k!
.eK̄|t| (K̄|t|)ℓ

ℓ!
≤ const.eK̄|t| (2K̄|t|)k+ℓ

(k + ℓ)!

where k is allowed values in [0, d(y, X)] or [0, d(x, X)] and ℓ is allowed values in [0, d(y, x1)],
so that k + ℓ is allowed all values in [0, [σ − 1]+].

For general j > 0, using induction on j, and the bounds on |∆qx|, |r(0,j)
x | shows that

the products appearing in the rest have, in absolute value, bounds of the form

const.
(K̄|t|)k

k!
.(exp

∑

n

jnK̄|t|).
∏

n

(Ljn
|t|)ℓn

ℓn!

≤ const.ejK̄|t| [(K̄ +
∑

n Ljn
)|t|]k+

∑

ℓn

(k +
∑

ℓn)!
≤ const.ejK̄|t|

(L′
j|t|)τ ′

τ ′!

where L′
j = K̄ + maxX

∑

n Ljn
, and we must now discuss the range of τ ′ = k +

∑

ℓn.
Remember that there is a ∆ in front of one of the factors of the product we are considering.

If the ∆ is in front of the coefficient depending smoothly on qx, qy, this corresponds
to k ∈ [0, d(z, X)] with z = x or y, while ℓn ∈ [0, σ(zn, Xn)] with zn = x or y. Since
d(x, y) = 1, we have d(z, X) +

∑

ℓ σ(zℓ, Xℓ) + 1 ≥ σ(x, x1, . . . , xj; X) = σ; therefore
τ ′ = k +

∑

ℓn is allowed all values such that 0 ≤ τ ′ ≤ [σ − 1]+.

If the ∆ is in front of one of the r
(0,j)
zn , say for n = a, the corresponding ℓa is ∈

[0, σ(za, Xa; X)] by the induction assumption, the other r
(0,jn)
zn are ∈ [0, σ(zn, Xn)], and

we have k = 0. Note that

σ(za, Xa; X) +
∑

n6=a

σ(zn, Xn) + 1 ≥ σ(x, x1, . . . , xj; X) = σ

therefore τ ′ =
∑

ℓn is again allowed all values such that 0 ≤ τ ′ ≤ [σ − 1]+. In conclusion
we have

|rest| ≤ Cje
jK̄|t| inf

0≤τ ′≤[σ−1]+

(L′
j|t|)τ ′

τ ′!

To start the proof of (3) we write

sup
x

|∆(0,j)
x (t; x1, . . . , xj; X)| = r(t; x1, . . . , xj; X) = eK̄|t|s(t)
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and let σ′ = σ(x1, . . . , xj; X) = minx σ(x, x1, . . . , xj; X), Then for τ ′ ∈ [0, [σ′ − 1]+] and
t ≥ 0 we obtain, as in the proof of Proposition 2.7

d

dt
s(t) ≤ Cje

(j−1)K̄t
(L′

jt)
τ ′

τ ′!

hence

|∆r(0,j)
x (t; x1, . . . , xj; X)| ≤ Mje

jK̄|t| inf
0≤τ≤σ′

(Lj |t|)τ

τ !

and the proof of (3) continues as the proof of (1).

The case i > 0 (taking now d(x, X) > i) is treated as in the proof of Proposition
2.7.
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