96 research outputs found

    VIP: Incorporating Human Cognitive Biases in a Probabilistic Model of Retweeting

    Full text link
    Information spread in social media depends on a number of factors, including how the site displays information, how users navigate it to find items of interest, users' tastes, and the `virality' of information, i.e., its propensity to be adopted, or retweeted, upon exposure. Probabilistic models can learn users' tastes from the history of their item adoptions and recommend new items to users. However, current models ignore cognitive biases that are known to affect behavior. Specifically, people pay more attention to items at the top of a list than those in lower positions. As a consequence, items near the top of a user's social media stream have higher visibility, and are more likely to be seen and adopted, than those appearing below. Another bias is due to the item's fitness: some items have a high propensity to spread upon exposure regardless of the interests of adopting users. We propose a probabilistic model that incorporates human cognitive biases and personal relevance in the generative model of information spread. We use the model to predict how messages containing URLs spread on Twitter. Our work shows that models of user behavior that account for cognitive factors can better describe and predict user behavior in social media.Comment: SBP 201

    Studying Diffusion of Viral Content at Dyadic Level

    Full text link
    Diffusion of information and viral content, social contagion and influence are still topics of broad evaluation. As theory explaining the role of influentials moves slightly to reduce their importance in the propagation of viral content, authors of the following paper have studied the information epidemic in a social networking platform in order to confirm recent theoretical findings in this area. While most of related experiments focus on the level of individuals, the elementary entities of the following analysis are dyads. The authors study behavioral motifs that are possible to observe at the dyadic level. The study shows significant differences between dyads that are more vs less engaged in the diffusion process. Dyads that fuel the diffusion proccess are characterized by stronger relationships (higher activity, more common friends), more active and networked receiving party (higher centrality measures), and higher authority centrality of person sending a viral message.Comment: ASONAM 2012, The 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE Computer Society, pp. 1291-129

    Information is not a Virus, and Other Consequences of Human Cognitive Limits

    Full text link
    The many decisions people make about what to pay attention to online shape the spread of information in online social networks. Due to the constraints of available time and cognitive resources, the ease of discovery strongly impacts how people allocate their attention to social media content. As a consequence, the position of information in an individual's social feed, as well as explicit social signals about its popularity, determine whether it will be seen, and the likelihood that it will be shared with followers. Accounting for these cognitive limits simplifies mechanics of information diffusion in online social networks and explains puzzling empirical observations: (i) information generally fails to spread in social media and (ii) highly connected people are less likely to re-share information. Studies of information diffusion on different social media platforms reviewed here suggest that the interplay between human cognitive limits and network structure differentiates the spread of information from other social contagions, such as the spread of a virus through a population.Comment: accepted for publication in Future Interne

    Studying Paths of Participation in Viral Diffusion Process

    Full text link
    Authors propose a conceptual model of participation in viral diffusion process composed of four stages: awareness, infection, engagement and action. To verify the model it has been applied and studied in the virtual social chat environment settings. The study investigates the behavioral paths of actions that reflect the stages of participation in the diffusion and presents shortcuts, that lead to the final action, i.e. the attendance in a virtual event. The results show that the participation in each stage of the process increases the probability of reaching the final action. Nevertheless, the majority of users involved in the virtual event did not go through each stage of the process but followed the shortcuts. That suggests that the viral diffusion process is not necessarily a linear sequence of human actions but rather a dynamic system.Comment: In proceedings of the 4th International Conference on Social Informatics, SocInfo 201

    Influence of augmented humans in online interactions during voting events

    Full text link
    The advent of the digital era provided a fertile ground for the development of virtual societies, complex systems influencing real-world dynamics. Understanding online human behavior and its relevance beyond the digital boundaries is still an open challenge. Here we show that online social interactions during a massive voting event can be used to build an accurate map of real-world political parties and electoral ranks. We provide evidence that information flow and collective attention are often driven by a special class of highly influential users, that we name "augmented humans", who exploit thousands of automated agents, also known as bots, for enhancing their online influence. We show that augmented humans generate deep information cascades, to the same extent of news media and other broadcasters, while they uniformly infiltrate across the full range of identified groups. Digital augmentation represents the cyber-physical counterpart of the human desire to acquire power within social systems.Comment: 11 page

    Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    Full text link
    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.Comment: 11 pages, 4 figure

    Performance Analysis of Online Social Platforms

    Get PDF
    We introduce an original mathematical model to analyze the diffusion of posts within a generic online social platform. Each user of such a platform has his own Wall and Newsfeed, as well as his own self-posting and re-posting activity. As a main result, using our developed model, we derive in closed form the probabilities that posts originating from a given user are found on the Wall and Newsfeed of any other. These probabilities are the solution of a linear system of equations. Conditions of existence of the solution are provided, and two ways of solving the system are proposed, one using matrix inversion and another using fixed-point iteration. Comparisons with simulations show the accuracy of our model and its robustness with respect to the modeling assumptions. Hence, this article introduces a novel measure which allows to rank users by their influence on the social platform, by taking into account not only the social graph structure, but also the platform design, user activity (self- and re-posting), as well as competition among posts.Comment: Preliminary version of accepted paper at INFOCOM 2019 (Paris, France
    corecore