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Abstract—We introduce an original mathematical model to
analyze the diffusion of posts within a generic online social
platform. Each user of such a platform has his own Wall and
Newsfeed, as well as his own self-posting and re-posting activity.
As a main result, using our developed model, we derive in closed
form the probabilities that posts originating from a given user are
found on the Wall and Newsfeed of any other. These probabilities
are the solution of a linear system of equations. Conditions of
existence of the solution are provided, and two ways of solving
the system are proposed, one using matrix inversion and another
using fixed-point iteration. Comparisons with simulations show
the accuracy of our model and its robustness with respect to
the modeling assumptions. Hence, this article introduces a novel
measure which allows to rank users by their influence on the
social platform, by taking into account not only the social graph
structure, but also the platform design, user activity (self- and
re-posting), as well as competition among posts.

I. INTRODUCTION

Online Social Platforms (OSPs) play a major role in the way
individuals communicate with each other, share news and get
informed. Today such platforms host billions of user profiles.
Although OSPs differ from one another, most of them share
a common structure, which allows users to post messages on
their Wall and read posts of others on a separate Newsfeed.
Most OSPs also permit re-posting from Newsfeed to Wall,
in order to facilitate information diffusion. With each re-post
(or “share”, or “re-tweet”) the information becomes visible to
a new audience, which may choose to adopt it or not, thus
spreading further the post or halting its diffusion. In this way,
posts originally generated by some user circulate inside the
social network [1]. When the post is gradually adopted by a
considerable proportion of the users, we see large cascades of
information appear, and we refer to such posts as “viral” [2].

Understanding how information spreads through OSPs is
very important as it affects the opinion of the population
over several subjects of every-day social life. Companies
want to determine the set of most influential users for better
marketing of their products [3], and they would like to predict
information cascades [4]. Such research is critical also because
spreading of influence can have malevolent purposes instead
[5], such as the spread of misinformation (“fake news”). To
be able to develop defense mechanisms against such social
attacks, a concrete mathematical analysis of post diffusion
through OSPs is necessary.

Related literature on the topic has mainly focused on models
for opinion dynamics given a social graph, but has not yet
considered either the OSP structure or user activity. It would be
useful to have an analytical model that explains what makes a
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post become viral within the platforms, how posts of different
user origin compete for visibility, and what is the role of
user activity. Instead, most available research on understanding
cascades and post diffusion in OSPs is data-driven [1], [2], [4].

A. Related Literature

In most relevant research on opinion dynamics, individuals
are seen as agents whose relation is described by a social
graph. Each agent has a certain opinion and at each step this
opinion is updated through interaction with his direct peers.
Such models can be grouped into two general categories.
1) Dynamics with Binary opinions: There are only two pos-
sible opinions that agents can take. A large amount of work
descends from the voter model [6], where opinion dynamics
are based on imitation. A variation has been studied in [7],
where agents with persisting opinions are included. For further
extensions, see also [8]. Another group of work is related to
epidemic spread. An agent is “susceptible” when his opinion is
0 and becomes “infected” when he adopts opinion 1, through
social interaction. In [3] two such mechanisms for opinion
updates have been proposed.
2) Dynamics with Continuous opinions: Several works in the
literature have inherited and extended the original model of
DeGroot [9]. In this, each agent updates his continuous opinion
by forming at each step a weighted linear combination of
the current opinions of his peers. Variations of this model
consider the inclusion of persistent agents [10]. In [11] this
update mechanism is used to formulate and solve an opinion
manipulation problem. To account for more realistic social
behavior, the authors in [12] consider opinion dynamics where
agents interact in pairs when their opinions are already close.

Data, OSPs, and Cascades: Instead of modeling opinion
dynamics, recent works rather use available data to investigate
more practically how posts spread within OSPs. The authors in
[1] describe diffusion patterns that arise in specific online do-
mains. Data analysis of large Facebook cascades is performed
in [2]. Interestingly, the authors in [4] propose ways to predict
cascade growth using machine learning tools.

User activity: In [13] the authors identify user activity as
an important control tool for influence maximisation. Making
extensive use of datasets, they study the appropriate times for
a user to post or re-post in an OSP in order to maximise the
probability of audience response.

An interesting analytical effort to relate user activity with
OSP design and post diffusion is made in [14]. The authors
use temporal point processes to model posting and re-posting
activity of a user. They highlight the importance of the
Newsfeed in post propagation and map user activity to post
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visibility, building on the idea that a post can be adopted by
a follower when it is visible on his Newsfeed and not pushed
away by competing posts. Their model, however, treats only
a single user Newsfeed and does not consider the dynamics
of the entire social graph. Furthermore, the dynamics of the
Newsfeed list are inaccurately mimicked by a FIFO queue (see
also [18] for another interesting approach using FIFO).

B. Our Contributions

In this work we propose an analytical model for post
diffusion in OSPs, which considers the entire social graph
and allows users to generate new posts, or share on their Wall
existing posts they find on their Newsfeed. The system is de-
scribed in Section II. By incorporating the Wall and Newsfeed
lists, we allow posts from different origin to compete for the
attention of each user. Re-posting activity allows shared posts
to further become visible to the users’ followers. Re-posting
thus plays the role of an information “valve”. To the best of
our knowledge such analytical model is completely original.

The model describing the generic OSP is presented in
Section III. To cope with the enormous state-space of the initial
model, we introduce an accurate approximation which decom-
poses the state description. We further simplify the model by
focusing on posts from a single user while aggregating all
the rest. In steady-state, the “aggregated” description results
in a system of linear equations for the unknown influence
probabilities. Its closed-form solution is given in Th. 3.
Conditions for the existence of a solution, and an iterative
method for the solution are provided in Section IV. The code
is available in the INFOCOM ieee final version. Extended
numerical experiments (Section V) verify the validity of our
model, and highlight the importance of user activity and OSP
structure in better understanding the spread of posts in OSPs.
Conclusions are drawn in Section VI.

II. SYSTEM DESCRIPTION

Let us first describe a generic social network platform,
such as Facebook or Twitter. A set of users generate and
share some content, denoted as posts, through the platform.
Each user has a list of followers and a list of leaders. A
user can simultaneously be follower and/or leader of others.
As a follower, he (she) is interested in the content posted
by his (her) leaders. With each user two lists of posts are
associated, namely a Newsfeed and a Wall. A user’s Newsfeed
is constantly fed by the content that all of his leaders post
on their Walls. A user’s Wall is fed (i) by his self-generated
posts that draw influence from the “outside world”, and (ii) by
posts that he shares from his Newsfeed. Hence, a user’s Wall
is a list of self-posts and re-posts. The generic social network
platform is illustrated in Figure 1.

A. Assumptions on the system and notations

We consider a constant number N of active users, forming
the set N . Users are labelled by an index n = 1, . . . , N . We
denote by F (n) and L(n) the list of followers and the list
of leaders of user n. Without loss of generality, we draw the
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Fig. 1: The social platform from the point of view of user n.

directed Leader-graph G = (N , E). Each pair of nodes (i, j) ∈
E , corresponds to a directed edge from i to j, when i is a leader
of j, i.e., i ∈ L(j). We denote by L the N × N adjacency
matrix of the Leader-graph, whose coefficients are given by:
`i,j = 1{i∈L(j)}, where 1{.} is the indicator function. We

assume that each user n has at least one leader, i.e., L(n) 6= ∅,
∀n. The Follower-matrix is by definition F := LT .

The sizes of both Wall and Newsfeed are considered to be
constant. We thus fix K the size of a Wall (total number of
posts found on the Wall of each user) and M the size of a
Newsfeed. This is reasonable if we assume that only a certain
number of most recent posts is considered relevant, and users
don’t tend to scroll down to access older posting history.

We denote by λ(n) [posts/unit time] the rate with which
user n generates new posts on his Wall, and by µ(n) the rate
with which user n visits his Newsfeed and selects one of the
M entries to re-post on his Wall (note here that each visit
implies re-posting). As a result, posts arrive on the n-th Wall
with a total rate λ(n) + µ(n) [posts/unit time]. Additionally,
we make the assumption that content posted on a users’s Wall
instantaneously appears on the Newsfeeds of his followers.
As a result, the input rate of posts in the n-th Newsfeed, is∑
j∈L(n)(λ(j) + µ(j)). Given that the two lists associated per

user have fixed size, then with each new entry one element
has to be removed from the list and replaced by the new one.
For the user activity we require λ(n) + µ(n) > 0, ∀n.

Finally, any post originally generated by a given user n
takes as label the author’s index n, and will keep this label
throughout its lifespan inside the network.

B. Influence metric of interest

The aim is to estimate the influence of a specific user, say
user i, over the entire network. In order to define the metric of
interest, we first define the influence of user i on user n, q(n)i ,
as the steady-state probability that a post found on the Wall of
user n is of label i, i.e., has been originally created by user i.
Note that these probabilities are performance parameters that
will be the output of the developed models. They obviously
satisfy

∑N
i=1 q

(n)
i = 1, ∀n. With the above, we propose the



following metric of influence,

Ψi =
1

N − 1

∑
n 6=i

q
(n)
i . (1)

It corresponds to the average probability that a post on the Wall
of any user n 6= i, has origin i. Note here that the suggested
metric averages over all users in the network, but excludes
the original user i. Other metric definitions are also possible.
Since an influence score is associated with each user, the social
users can be ranked by decreasing order of their influence.

III. MARKOVIAN MODELS

A. Modeling assumptions

For the analysis, we make the following assumptions:
• Poisson arrivals. For any user n the generation of new

posts on his Wall follows a Poisson process with rate λ(n)

and the re-posting activity from his Newsfeed follows a
Poisson process with rate µ(n).

• Random selection. When a user visits his own Newsfeed,
we assume that he selects at random one of the M entries
to re-post on his Wall.

• Random eviction. A novel entry on the Wall or Newsfeed
list will push out an older entry of random position.

Thanks to these assumptions, the resulting models devel-
oped in the following are Markovian. Indeed, all inter-arrival
times between posts and re-posts are exponential and all
choices are probabilistic. The random selection is consistent
with common practice in real life, because it is the actual
content of posts rather than the order of appearance in the
Newsfeed which plays major role in the decision to re-post.
The random eviction from the Wall is less realistic, since new
entries are normally placed at the top of the Wall list (which
would correspond to an oldest eviction policy). The validity
and robustness of all these assumptions will be evaluated
through simulations. As will be seen in Section V-B they have
a very limited impact on performance.

B. Detailed Model

The full state-description for this system is an N-tuple
(U(1), . . . ,U(N)), where U(n) = (x(n),y(n)) is the state
of user n (at a given time t, omitted in notations for sake
of clarity). x(n) is the state of his Newsfeed and y(n) the
state of his Wall. The random eviction and random selec-
tion assumptions allow to describe the system-state evolution
without using information over the order of posts in the lists.
Then, x(n) = (x

(n)
1 , . . . , x

(n)
N ), where x(n)i counts the number

of posts with user-origin i found in the Newsfeed of user
n. Similarly, y(n) = (y

(n)
1 , . . . , y

(n)
N ) where y

(n)
i counts the

number of posts with origin i found in the Wall of user n.
With all the assumptions described in Section III-A, it

can be shown that the stochastic process resulting from the
full state-description (U(1), . . . ,U(N)), is a continuous-time
Markov chain model. As such, its steady-state can theoretically
be solved. However, even for very small values of the system
parameters the number of states will be enormous, whereas the

state of a user’s Newsfeed and Wall is coupled with the state
of other users. As a result, any solution using, e.g., a numerical
method, would be computationally intractable. For this reason
we introduce in the next subsection a simple approximation
that decouples the state-space and considerably reduces the
solution complexity with negligible loss in precision.

Before presenting the decomposed model, it is important
to understand where the coupling between states of different
users appears. Consider user n and focus on label i posts. A
leader k of user n will re-post from his own Newsfeed to his
own Wall a post of label i with probability x(k)i /M , due to the
random selection policy. This post will appear immediately in
the Newsfeed of user n, thus changing its state y(n). Hence,
the evolution of the state of user n depends not only on his
own current state and on his own activity, but also on the states
and activity of all of his leaders.

C. Decomposed Model

We now develop an approximate Markovian model which
will eventually lead to a closed-form solution for the system’s
steady-state. The main idea is the following: for a given user
n, the state transitions of his Newsfeed and Wall will still be
a function of his own current state and activity, as well as the
activity of all of his leaders. But they will not depend anymore
on the current states of the user’s leaders (as shown above),
rather on their average probabilities in steady-state, which
at this point are unknown values. In this way, the original
full state-description can be decomposed into 2N independent
state-descriptions resulting in 2N decoupled Markov Chains,
each one associated with the Newsfeed and the Wall of a given
user. The coupling between the produced 2N Markov Chains
exists only through the unknown values of the steady-state
probabilities.

For more details we refer the reader to the INFOCOM ieee
version.

D. Aggregated Model

The state-space of the decoupled Markov chains associated
with both Newsfeed and Wall of a user can still be very large.
Each chain is N-dimensional. For any feasible state of the n-th
Newsfeed, i.e., combination of posts x(n) = (x

(n)
1 , . . . , x

(n)
N ),

it holds that
∑N
i=1 x

(n)
i = M . Hence, the size of its state-space

corresponds to the number of ways to put M undifferentiated
objects in N distinct boxes, and is equal to

(
M+N−1

M

)
.

Similarly, any state y(n) = (y
(n)
1 , . . . , y

(n)
N ) of the Wall of

user n is such that
∑N
i=1 y

(n)
i = K. As a result, the size of

the Wall state-space is equal to
(
K+N−1

K

)
. These state-spaces

can still be huge for large values of N,M , or K.
We now present an aggregated Markov chain model that

gets around the problem by considering a reduced state-space,
but without introducing any additional approximation. As a
result, the aggregated model has the same accuracy as the
decomposed model presented in the previous section.

Our starting point here is the decomposed model. The idea is
to focus on a particular user i and develop an aggregated model
that will only be able to calculate the influence of user i on



the entire network. Of course, one can successively apply the
technique to all i = 1, . . . , N in order to determine eventually
the influence of all users.

We thus particularize a given user i and aggregate the state-
space of the system as follows.

For more details we refer the reader to the INFOCOM ieee
version.

IV. CLOSED FORM SOLUTION

After analytical calculations, we can obtain the following
very simple balance expression for the Newsfeed of user i
and posts of origin i:

p
(i)
i

∑
k∈L(i)

(
λ(k) + µ(k)

)
=
∑
k∈L(i)

µ(k)p
(k)
i (2)

Similarly, we get for the Newsfeed of any user j 6= i, and
posts of origin i, the following balance equation:

p
(j)
i

∑
k∈L(j)

(
λ(k) + µ(k)

)
= λ(i)1{i∈L(j)} +

∑
k∈L(j)

µ(k)p
(k)
i .

(3)
For details on the derivation of the above balance equations

please refer to the INFOCOM ieee version. Note however, that
these have also an intuitive interpretation. Equation (2) is an
equality of two rates. On the right hand is the rate that posts
of origin i enter the Newsfeed of user i, after being selected
from his leaders’ Newsfeeds. On the left hand is the rate that
posts of origin i leave the Newsfeed of user i. This is just the
total incoming rate, thinned by the probability that a post is of
origin i. Remember that for our list the incoming rate is equal
to the outgoing rate (no loss of posts). Hence the equation
balances the ingress and egress flow of posts of origin i in the
Newsfeed i. Similar reasoning holds for equation (3).

In the same fashion, the steady-state probabilities for the
Wall can be directly derived from the steady-state probabilities
for the Newsfeed as (remember λ(n) + µ(n) > 0, ∀n):

q
(i)
i =

λ(i)

λ(i) + µ(i)
+

µ(i)

λ(i) + µ(i)
· p(i)i , (4)

q
(j)
i =

µ(j)

λ(j) + µ(j)
· p(j)i . (5)

The above analysis gives an important structural property
of the steady-state solution as a side product.

Theorem 1 (Insensitivity in list size). The steady-state
probabilities to find posts from user i on the Wall of any user
n (q(n)i , n = 1, . . . , N ) as well as on the Newsfeed of any user
n (p(n)i , n = 1, . . . , N ), depend neither on the size M of the
Newsfeed, nor on the size K of the Wall.

Proof. The proof directly comes from the set of 2N equations
(2)-(3) for the Newsfeeds and (4)-(5) for the Walls, that depend
neither on M nor on K.

A. Linear system

We can re-write (2)-(3) and (4)-(5) for posts with label i in
a compact form and summarize our findings as follows.

Theorem 2 (Linear System). The unknown column vectors
pi := (p

(1)
i , . . . , p

(N)
i )T and qi := (q

(1)
i , . . . , q

(N)
i )T are the

solution of the following linear system

pi = A · pi + bi (6)
qi = C · pi + di. (7)

In the above, A and C are N ×N matrices independent of
i, whereas bi and di are N-column vectors that depend on i.
Hence, a standard linear system should be resolved for each i.
The entries of the above matrices and vectors are summarised
in Table I. It is interesting to note that aj,j = 0 for all j,
bi,i = 0, C is diagonal, and also there is a unique positive
di,j entry for i = j.

A aj,k := µ(k)∑
`∈L(j) (λ

(`)+µ(`))
1{k∈L(j)}

bi bj,i :=
λ(i)∑

`∈L(j) (λ
(`)+µ(`))

1{i∈L(j)}

C cj,k := µ(j)

λ(j)+µ(j) 1{j=k}

di dj,i :=
λ(i)

λ(i)+µ(i) 1{j=i}

TABLE I: Entries for the matrices/vectors of the linear system.

The matrix A is non-negative. In addition, it is row sub-
stochastic, meaning that the sum of all its rows is less or
equal to 1, with at least one row sum strictly less than 1
(if we reasonably assume that at least one user injects self-
posts). Another interesting property is that A is a weighted
version of the Follower-matrix F = LT , so that if 1{j∈F(k)} =

1{k∈L(j)} = 0 ⇒ aj,k = 0. There are cases however where

j follows `, but aj,` = 0 in the matrix A, because µ(`) = 0.
Hence, users that never re-post from their Newsfeed alter the
possibilities of post propagation in the graph. This is why we
call A, the propagation matrix.

B. Closed-form solution

We would like to know under which conditions a solution
to the linear system in (6) - and as a consequence (7) - exists.
To this aim we first recall the following known Lemma, where
IN is the N ×N identity matrix. It relates the solution of our
system to the spectral radius of A, denoted by ρ(A).

Lemma 1. [15, Chapter 6, Lemma 2.1] Given a nonnegative
matrix T ∈ RN×N+ , its spectral radius is ρ(T) < 1 if and
only if (IN −T)−1 exists, which can be written as the series

(IN −T)−1 =

∞∑
n=0

Tn ≥ 0. (8)



From the specific structure of the non-negative matrix A
we have the following property.

Lemma 2. ρ(A) ≤ 1. Strict inequality is guaranteed in the
following non-exclusive non-exhaustive cases (cs):
(cs1) λ(n) > 0, ∀n ∈ N .
(cs2) For every cycle in the Leader-graph, at least one partic-

ipating user has a leader k with positive self-post rate.

Proof. Let us denote the row sums of A by r(j), j = 1 . . . N .
Then r(j) ≤ 1 by definition from Table I. It is known that
([17, Theorem 8.1.22]) the following bounds are valid for
the spectral radius of a non-negative matrix: minNj=1 r(j) ≤
ρ(A) ≤ maxNj=1 r(j). The right-hand side in our case is 1 and
the first part is proven.

(cs1) When λ(n) > 0, ∀n, then ∀j and k ∈ L(j), aj,k <
µ(k)/

∑
`∈L(j) µ(`), so that r(j) < 1, ∀j. Then the matrix is

strictly sub-stochastic, and ρ(A) ≤ maxNj=1 r(j) < 1.
(cs2) In this case, suppose the length of a particular cycle

is γ > 1 and the participating nodes are n1, . . . , nγ . Then
at least one row sum r(j) < 1, j ∈ {n1, . . . , nγ}. By direct
application of the Al’pin, Elsner, van den Dreissche bound
[16, Theorem A], we conclude that ρ(A) < 1. An additional
condition for this bound is that r(j) > 0, ∀j, which is satisfied
when L(j) 6= ∅, ∀j ∈ N and not all leaders of some user have
µ(k) = 0.

Remark 1. A special instance of (cs2) is when A is irre-
ducible and λ(j) > 0 for at least one j ∈ N .

Theorem 3 (Solution). For the two cases of Lemma 2, the
solution of the linear system (6)-(7) is unique, and given by

pi = (IN −A)
−1

bi (9)
qi = C (IN −A)

−1
bi + di. (10)

Proof. Lemma 2 guarantees that ρ(A) < 1 in both cases, so
that from Lemma 1 the inverse (IN −A)

−1 ≥ 0 exists and
the solution is unique.

An interesting observation is that the inverse (IN −A)−1

involved in the derivation of pi (relation (9)) is independent of
i. Thus, in the solution process the inverse should be calculated
only once, and then applied to the expressions in (9)-(10) for
labels i = 1, . . . , N .

C. Fixed-point algorithm

For large N it can be practically very difficult to calculate
the inverse (IN −A)

−1. A different way to proceed in order
to solve the system (6) is to use an iterative approach.

Theorem 4. For the two cases of Lemma 2 and any ini-
tialization vector pi(0), the discrete-time linear system (11)
converges towards the fixed-point solution (9) when t→∞.

pi(t) = A · pi(t− 1) + bi (11)

Proof. We first write pi(t) as a function of pi(0) and t,

pi(t) = Atpi(0) +

(
t−1∑
n=0

An

)
bi.

We need to find the limiting value pi := limt→∞ pi(t).
For the two cases in Lemma 2 we have ρ(A) < 1, so that
from [17, pp.137–138, or Theorem 5.6.12] it holds A∞ :=
limt→∞At = 0. Additionally, from Lemma 1 the limit of the
matrix series for t → ∞ converges to (IN −A)

−1. Hence,
the iteration converges to the solution (9), and is independent
of the initialisation pi(0).

Note that once the Newsfeed-vector pi := limt→∞ pi(t)
has been obtained, the Wall-vector qi can be calculated from
relation (7). The performance value Ψi is then directly derived
from (1).

V. NUMERICAL EVALUATION

We have shown that the linear system in Theorem 2 can be
solved either by matrix inversion, or by using a fixed-point
iteration algorithm. We have programmed both methods in
Python for any social-graph input and made the code freely
available in the INFOCOM ieee final version. This code will
be used for the numerical evaluation. Additionally, we have
developed our own discrete event simulator to validate the
mathematical analysis through simulation, and furthermore to
evaluate the robustness of the modeling assumptions presented
in Section III-A. Unlike our model, the simulator precisely
implements the behavior of the generic OSP as described in
Section II: i) The global state description consists of dynamic
lists (of length K for Walls and M for Newsfeeds); ii) A
variety of selection and eviction policies are implemented
(random, in a first phase, and newest, oldest, popular later to
evaluate robustness); iii) Self- and re-posts can be generated
according to Poisson or other processes. As such, the simulator
does not decouple the state space, does not estimate average
probabilities, and does not rely on Markovian assumptions.
For each simulation we set M = 20 and K = 10 and ran
long enough simulations to reach the steady-state with small
confidence intervals. More specifically, in all experiments, we
let the simulator run for a total of 300 000 events (self- and
re-posts).

A. Validation

We compare the values of the influence metric (1) resulting
from the numerical model with those obtained by simulation.
We use three different configurations for the user graph:
complete graph, grid and ring. The results are given in Fig. 2.

a) Complete graph: In this case, each user follows all
other users. All users have the same activity tuple (λ, µ).
As the network is totally symmetric, we plot the influence
of any user over the network for three different values of
ρ := λ

µ (0.5, 1 and 2), as a function of the network size
N . As shown on Fig. 2(a), there is a very good fit between
model and simulation, with a maximal relative error of about
0.5%. As a qualitative result, we observe that the influence of
a given user decreases as the size of the network increases.
This is reasonable since the more the users in the network, the
larger the competition between users to influence the Wall of
eachother, thus the smaller the influence per user. Furthermore,
we observe that the smaller the ρ, the higher the influence. This
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Fig. 2: Validation of the model: (a) left: Complete graph, (b) middle: Grid graph, (c) right: Ring graph.
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Fig. 3: Sensitivity with respect to modeling assumptions: (a) left: Inter-arrival distributions, (b) right: Selection/Eviction policies.

result shows that in a fully symmetric network, when everyone
decreases his self-post activity, there is more space left on his
Wall for being influenced by others through re-posting.

b) Grid graph: Depending on his position in the grid,
a user may have 4, 3 or 2 leaders. All users have the same
activity tuple (λ, µ), here set to (5, 3). On Fig. 2(b), we plot
the influence metric for three different types of users : the
central user (with 4 leaders), a user at the middle of an edge
(with 3 leaders) and a user at a corner (with 2 leaders), as a
function of the network size, N = 9, 25, 49, 81, 121. We again
obtain a very good match between the results of the model
and simulation, with a maximal absolute error of about 10−3.
We observe that the corner user has less influence than the
edge user, who in turn has less influence than the central user.
This is an obvious qualitative result, considering the different
numbers of followers each user has, but here we quantify the
impact of the position on the chosen influence metric.

c) Ring graph: Users are arranged on a circle and each
user i has Ri leaders on his right (i + 1, ..., i + Ri) and
Ri leaders on his left (i − 1, ..., i − Ri), Ri being denoted
as the radius of user i. For the comparison we use N =
31 users. Each one has been given a random uniform radius
in {1, ..., 15} and a random uniform activity tuple (λi, µi)
in [0.1, 10] × [0.1, 10]. We plot the influence for each user
in Fig.2(c). Once again, we observe a very good fit between
model and simulation, even for the user who has the least
accurate estimation (user “20” with a relative error of 2.5%).

B. Robustness

We further evaluate the robustness of the model with respect
to the modeling assumptions: Poisson arrival processes, ran-
dom selection and random eviction policies. For this purpose,
we modified our simulator to take into account alternative
inter-arrival distributions, as well as alternative selection and
eviction policies. In each simulation of this subsection, we
chose a complete graph with a varying number N of users,
and we set (λ, µ) = (10, 5).

a) Inter-arrival times: First we evaluate the robustness
of the model with respect to the Poisson arrival assumption.
In Fig. 3(a), we plot the evolution of the average influence∑
i Ψi/N with three different inter-arrival distributions for

both self-post and re-post processes of all users: exponential
(corresponding to the original Poisson assumption), hyper-
exponential (resulting in a process having more variability
than the Poisson process) and deterministic (process with no
variability). As can be seen on the figure, the three curves
almost coincide. We have confirmed this observation with
many different tests, highlighting the fact that the model is
almost insensitive to the Poisson assumption.

b) Policies: We programmed in our simulator alternative
policies based on age and popularity. In the “newest selection”
policy, each user always chooses the most recent post on his
Newsfeed list to re-post on his Wall (instead of a random one).
Hence, this policy uses extra information on the view order of
posts. With the “least popular (resp. most popular) selection”,
the post to be re-posted is selected among the ones with the
maximal (resp. minimal) number of re-posts. This policy also



uses extra information on re-post history. “Oldest eviction”
means that when a post has to be evicted from a Wall or a
Newsfeed, it is the oldest in the list that is chosen (instead of
a random one). We observe on Fig. 3(b) that replacing random
selection by newest selection and/or replacing random eviction
by oldest eviction, has almost no influence on performance.
Now, in the case of a selection policy based on popularity,
the difference with a random policy becomes higher. This is
not surprising, as selection policies based on re-post history,
drastically alter the studied system. However, the effect is
mainly significant for small networks. We can thus generally
conclude that our model is also very robust with regard to the
choice of selection and eviction policies.

C. Model exploitation

Having demonstrated the accuracy and the robustness of our
model, we now investigate how the influence of a given user
is related to his position in the graph and to the relative values
of his own activity compared to the activity of other users.

a) Direct vs. indirect influence: We first consider a
ring with N = 31 users, each one having the same radius
R = 3, and we plot the influence of user “1” on the
other users. Since R = 3, user “1” has six followers: users
{“2”, “3”, “4”, “29”, “30”, “31”}. In Fig. 4(a) we represent
three curves corresponding to three different values of the ratio
ρ = λ

µ , namely ρ = 0.1, 1, and 10, assuming that each user in
the network has the same self-post rate λ and the same re-post
rate µ. First, we observe that all the curves are symmetrical,
which comes from the symmetry of the user graph. More
importantly, we see that user “1” has a greater influence on
his direct followers, than on the other users. And obviously,
the greater the distance from user “1”, the less influence of
user “1” on the considered user. Here user “16” is the one
that is less influenced by user “1”. Interestingly, the difference
between the “direct influence”, i.e., the influence of a user
on one of his follower, and the “indirect influence”, i.e., the
influence of a user on a node that is not one of his follower, is
closely related to ρ. The smaller the ρ, the larger the influence
diffusion in the network.

b) Influence and graph position: Here we consider a
grid graph with 400 users, each one having the same activity
(λ, µ) = (10, 10). Each square represents a user and is colored
according to his influence Ψi over the network. As expected,
the peripheral users, i.e., the users located on the outer edges,
and in a more pronounced manner, the corner users are the
ones with the smallest influence. This is due to the fact that
these users have 3 or 2 direct followers, whereas all others
have 4. But contrary to intuition, the central users are not the
most influential. In fact, the users with the highest influence
are located in the first inner ring, i.e., at one hop from the
peripheral ones. And more precisely, the most influential users
are the four diagonal neighbors of the corner users. We have
verified this property on different graphs. As an example, on a
tree, leaves are the less influential users, whereas the parents
of leaves are the most influential users. As a conclusion,
in a social network where all users have the same activity,

being a leader of users with few other leaders increases one’s
influence. Obviously this is partly due to our definition of
influence, but alternative metrics have shown to follow the
same trend.

c) Influence and activity: We now want to see if a
user with a position that gives him a low influence in the
network can counterbalance his bad placement by increasing
his posting activity. To this aim we consider again the grid of
the previous subsection. We set (λ, µ) = (10, 10) for all users
except for the south-west corner user who is given the same
re-post rate, µcorner = 10, but that can adjust his self-post
rate λcorner. In Fig. 4(c), we let only λcorner vary from 0.1
to 100, keeping (λ, µ) and µcorner fixed, and plot the activity
of the considered corner user, as well as the activity of the
central user and of the diagonal neighbor of the corner user
(the most influential in a network with symmetric activities).

First of all, we observe that the corner user becomes more
and more influential as his posting rate increases, and he even-
tually becomes the most influential user in the network. The
central user is too far away from the corner user to be affected
by the evolution of his posting rate, so his influence remains
constant. However, observe that the raise of λcorner causes
a drop in the influence of his diagonal direct neighbor. As a
conclusion, the answer is positive: one can counterbalance his
bad position by increasing his self-posting activity.

VI. CONCLUSIONS

In this work we have introduced an original mathematical
model that analyzes the diffusion of posts in a generic social
platform and quantifies the influence of a given user over
any other within the entire network. By resolving it we
have derived closed-form expressions for metrics of influence,
which allow to rank users. These results constitute a novel
powerful toolbox that can be further exploited to understand
and design social platforms. They should be further compared
and combined with network data analytics to highlight their
importance. Our model can be used to derive policies for
optimal user activity. But, most importantly we hope that it
can lead to platform design rules that offer fair and unbiased
access and post circulation for all.
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