617 research outputs found

    A Scalable Approach for Service Chain (SC) Mapping with Multiple SC Instances in a Wide-Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is called SC mapping. In a Wide-Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC; then, a single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with the problem of SC mapping with multiple SC instances to minimize network resource consumption. We first propose an Integer Linear Program (ILP) to solve this problem. Since ILP does not scale to large networks, we develop a column-generation-based ILP (CG-ILP) model. However, we find that exact mathematical modeling of the problem results in quadratic constraints in our CG-ILP. The quadratic constraints are made linear but even the scalability of CG-ILP is limited. Hence, we also propose a two-phase column-generation-based approach to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to a solution very close to the minimum bandwidth consumption. Further, this approach also helps us to analyze the effects of number of VNF replicas and number of NFV nodes on bandwidth consumption when deploying these minimum number of SC instances.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0671

    Agile management and interoperability testing of SDN/NFV-enriched 5G core networks

    Get PDF
    In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    A conceptual architecture for integrating software defined network and network virtualization with internet of things

    Get PDF
    Software defined network (SDN) and network function virtualization (NFV) are new paradigms and technologies of the network which support the best experience of providing functions and services, managing network traffic, and a new way of control. They support virtualization and separating data from control in network devices, as well as provide services in a software-based environment. Internet of things (IoT) is a heterogeneous network with a massive number of connected devices and objects. IoT should be integrated with such technologies for the purpose of providing the capabilities of dynamic reconfiguration with a high level of integration. This paper proposes a conceptual architecture for integrating software defined network (SDN) and NFV with IoT. The proposed work combines the three technologies together in one architecture. It also presents the previous works in this area and takes a look at the theoretical background of those technologies in order to give a complete view of proposed work

    Towards Flexible Integration of 5G and IIoT Technologies in Industry 4.0: A Practical Use Case

    Get PDF
    The Industry 4.0 revolution envisions fully interconnected scenarios in the manufacturing industry to improve the efficiency, quality, and performance of the manufacturing processes. In parallel, the consolidation of 5G technology is providing substantial advances in the world of communication and information technologies. Furthermore, 5G also presents itself as a key enabler to fulfill Industry 4.0 requirements. In this article, the authors first propose a 5G-enabled architecture for Industry 4.0. Smart Networks for Industry (SN4I) is introduced, an experimental facility based on two 5G key-enabling technologies—Network Functions Virtualization (NFV) and Software-Defined Networking (SDN)—which connects the University of the Basque Country’s Aeronautics Advanced Manufacturing Center and Faculty of Engineering in Bilbao. Then, the authors present the deployment of a Wireless Sensor Network (WSN) with strong access control mechanisms into such architecture, enabling secure and flexible Industrial Internet of Things (IIoT) applications. Additionally, the authors demonstrate the implementation of a use case consisting in the monitoring of a broaching process that makes use of machine tools located in the manufacturing center, and of services from the proposed architecture. The authors finally highlight the benefits achieved regarding flexibility, efficiency, and security within the presented scenario and to the manufacturing industry overall.This work was supported in part by the Spanish Ministry of Economy, Industry and Competitiveness through the State Secretariat for Research, Development and Innovation under the “Adaptive Management of 5G Services to Support Critical Events in Cities (5G-City)” TEC2016-76795-C6-5-R and “Towards zero touch network and services for beyond 5G (TRUE5G)” PID2019-108713RB-C54 projects and in part by the Department of Economic Development and Competitiveness of the Basque Government through the 5G4BRIS KK-2020/00031 research project

    Use of a virtualization in the transition of a telecommunication networks toward 5G

    Get PDF
    We are in the front of the next big step of a new generation of the telecommunications networks, called 5G. The 5G in still in the preparation, but the actual wide spread use is nearby. The move toward 5G is not possible without use of a cloud and a virtualization. In the paper we are dealing with the issues how to incorporate existing fixed networks to the mobile 5G network and how to use a virtualization technology when moving to 5G. From the example of a real telecommunication system we defined issues, dilemmas and suggestions when moving toward 5G networks using virtualization

    Deploying SDN and NFV at the speed of innovation: toward a new bond between standards development organizations, industry fora and open-source software projects

    Get PDF
    Standards development organizations (SDOs) exist to assure the development of consensus-based, quality standards. These formal standards are needed in the telecommunications market to achieve functional interoperability. The standardization process takes years, and then a vendor still needs to implement the resulting standard in a product. This prevents service providers (SPs) who are willing to venture into new domains from doing so at a fast pace. With the development of software-defined networking (SDN) and network function virtualization (NFV), opensource technology is emerging as a new option in the telecommunications market. In contrast to SDOs, open-source software (OSS) communities create a product that may implicitly define a de-facto standard based on market consensus. Therefore, SPs are drawn to OSS, but they face technical, procedural, legal, and cultural challenges due to their lack of experience with open software development. The question therefore arises, how the interaction between OSS communities, SDOs, and industry fora (IF) can be organized to tackle these challenges. This article examines the evolving roles of OSS communities, IF, and SDOs, and places them in an NFV/SDN context. It sketches the differences between these roles and provides guidelines on how the interaction between them can turn into a mutually beneficial relationship that balances the conflicting goals of timely development on the one hand and technical excellence, openness, and fairness on the other, to reach their common goal of creating flexible and efficient telecommunications networks
    • …
    corecore