2,819 research outputs found

    Ambiguity Function Analysis and Direct-Path Signal Filtering of the Digital Audio Broadcast (DAB) Waveform for Passive Coherent Location (PCL)

    Get PDF
    This research presents an ambiguity function analysis of the digital audio broadcast (DAB) waveform and one signal detection approach based on signal space projection techniques that effectively filters the direct-path signal from the receiver target channel. Currently, most Passive Coherent Location (PCL) research efforts are focused and based on frequency modulated (FM) radio broadcasts and analog television (TV) waveforms. One active area of PCL research includes the search for new waveforms of opportunity that can be exploited for PCL applications. As considered for this research, one possible waveform of opportunity is the European digital radio standard DAB. For this research, the DAB performance is analyzed for application as a PCL waveform of opportunity. For this analysis, DAB ambiguity function calculations and ambiguity surface plots are created and evaluated. Signal detection capability, to include characterization of time-delay and Doppler-shift measurement accuracy and resolution, is investigated and determined to be quite acceptable for the DAB wavefor

    Chaotic communications over radio channels

    Get PDF

    A Communication Monitor for Wireless Sensor Networks Based on Software Defined Radio

    Get PDF
    Link quality estimation of reliability-crucial wireless sensor networks (WSNs) is often limited by the observability and testability of single-chip radio transceivers. The estimation is often based on collection of packer-level statistics, including packet reception rate, or vendor-specific registers, such as CC2420's Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). The speed or accuracy of such metrics limits the performance of reliability mechanisms built in wireless sensor networks. To improve link quality estimation in WSNs, we designed a powerful wireless communication monitor based on Software Defined Radio (SDR). We studied the relations between three implemented link quality metrics and packet reception rate under different channel conditions. Based on a comparison of the metrics' relative advantages, we proposed using a combination of them for fast and accurate estimation of a sensor network link

    Novel wireless modulation technique based on noise

    Get PDF
    In this paper, a new RF modulation technique is presented. Instead of using sinusoidal carriers as information bearer, pure noise is applied. This allows very simple radio architectures to be used. Spread-spectrum based technology is applied to modulate the noise bearer. Since the transmission bandwidth of the noise bearer can be made very wide, up to ultra-wideband regions, extremely large processing gains can be obtained. This will provide robustness in interference-prone environments. To avoid the local regeneration of the noise reference at the receiver, the Transmit-Reference (TR) concept is applied. In this concept, both the reference noise signal and the modulated noise signal are transmitted, together forming\ud the bearer. The reference and modulated signals are separated by applying a time offset. By applying different delay times for different channels (users) a new multiple access scheme results based on delay: Delay Division Multiple Access (DDMA). A theoretical analysis is given for the link performance of a single-user and a multi-user system. A testbed has been built to demonstrate the concept. The demonstrator operates in a 50 MHz bandwidth centered at 2.4 GHz. Processing gains ranging from 10Âż30 dB have been tested. The testbed confirms the basic behavior as predicted by the theory

    Effect of Non-Optimal Amplitude Frequency Response on Transmission of Power Line Communication Signals

    Get PDF
    Power line Communication (PLC) systems represent a relatively recent and rapidly evolving technology, aimed at the utilization of the electricity power lines for the transmission of data. This is due to increasing demand of low cost telecommunication, broadband and access to internet services. Power lines are inherently the most attractive medium for home networking due to its universal existence in homes, the abundance of alternating current outlets and the simplicity of the power plug. This work presented the effect of non-optimal amplitude frequency on transmission of power line communication signals by utilizing Orthogonal Frequency Division Multiplexing (OFDM) system. The simulation was carried out using MATLAB/SIMULINK with additive white Gaussian noise (AWGN) in order to obtain correct simulation performance results. Two channels of PLC were considered, the worse channel was taken into account and the channel output signal power was obtained. Bit Error Rate (BER) of Binary Phase Shift Keying (BPSK) in conjunction with multipath channel was used for a comparative performance of the studies.  The results indicated that data transmission in PLC environment needed a signal to be amplified or transmitted at higher powers. The result also showed that non-optimal amplitude frequency response had no effect on transmission of the PLC signal in the frequency bands despite the low noise signal in the system. The result demonstrated that OFDM exhibited better BER performance for providing adequate transmission channel for information over a PLC system.  This approach provided accurate reliability, security and robustness for better management of available energy resources to overcome the limitations of existing Power line communication technology. Keywords: Power Line Communication, Bit Error Rate, Orthogonal Frequency Division Multiplexing, Gaussian Noise, Transmission Line, Binary Phase Shift Keying DOI: 10.7176/JIEA/10-1-03 Publication date: January 31st 202

    Modeling of Orthogonal Frequency Division Multiplexing (OFDM) for Transmission in Broadband Wireless Communications

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation technique that provides high bandwidth efficiency because the carriers are orthogonal to each other and multiple carriers share the data among themselves. The main advantage of this transmission technique is its robustness to channel fading in wireless communication environment. This paper investigates the effectiveness of OFDM and assesses its suitability as a modulation technique in wireless communications. Several of the main factors affecting the performance of a typical OFDM system are considered and they include multipath delay spread, channel noise, distortion (clipping), and timing requirements. The core processing block and performance analysis of the system is modeled usingMatlab

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attirĂ© une Ă©norme quantitĂ© de recherches ces derniĂšres annĂ©es, surtout aprĂšs la prĂ©sentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de trĂšs hauts dĂ©bits de faible puissance tout en Ă©liminant les interfĂ©rences avec les systĂšmes existants Ă  bande Ă©troite. La faible puissance, cependant, limite la portĂ©e de propagation des radios UWB Ă  quelques mĂštres pour la transmission sans fil Ă  l’intĂ©rieur d’une piĂšce. En outre, des signaux UWB reçu sont Ă©tendus dans le temps en raison de la propagation par trajet multiple qui rĂ©sulte en beaucoup d’interfĂ©rence inter-symbole (ISI) Ă  haut dĂ©bit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thĂšse, nous dĂ©montrons des transmet- teurs qui sont capables de gĂ©nĂ©rer des impulsions UWB avec une efficacitĂ© de puissance Ă©levĂ©e. Une impulsion efficace rĂ©sulte dans un rapport de signal Ă  bruit (SNR) supĂ©rieur au rĂ©cepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomĂštres pour la distribution dans un rĂ©seau optique pas- sif. La fibre optique est trĂšs fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les Ă©lĂ©ments simples comme un modulateur Mach-Zehnder ou un rĂ©sonateur en anneau pour gĂ©nĂ©rer des impulsions, ce qui permet l’intĂ©gration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel Ă©norme pour abaisser le coĂ»t et l’encombrement des systĂšmes optiques. La photodĂ©tection convertit les impulsions optiques en impulsions Ă©lectriques avant la transmission sur l’antenne du cĂŽtĂ© de l’utilisateur. La rĂ©ponse frĂ©quentielle de l’antenne dĂ©forme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linĂ©aire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amĂ©lioration de l’énergie des impulsions UWB amĂ©liore directement la SNR au rĂ©cepteur. Les rĂ©sultats de simulation montrent que les impulsions optimisĂ©es amĂ©liorent considĂ©rablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adaptĂ© pour recevoir efficacement des impulsions UWB. Le filtre adaptĂ© est synthĂ©tisĂ© et fabriquĂ© en technologie microstrip, en collaboration avec l’UniversitĂ© McGill comme un dispositif de bande interdite Ă©lectromagnĂ©tique. La rĂ©ponse frĂ©quentielle du filtre adaptĂ© montre une ex- cellente concordance avec le spectre ciblĂ© de l’impulsion UWB. Les mesures de BER confirment la performance supĂ©rieure du filtre adaptĂ© par rapport Ă  un rĂ©cepteur Ă  conversion directe. Le canal UWB est trĂšs riche en trajet multiple conduisant Ă  l’ISI Ă  haut dĂ©bit. Notre derniĂšre contribution est l’étude de performance des rĂ©cepteurs en simulant un systĂšme avec des conditions de canaux rĂ©alistes. Les rĂ©sultats de la simulation montrent que la performance d’un tel systĂšme se dĂ©grade de façon significative pour les hauts dĂ©bits. Afin de compenser la forte ISI dans les taux de transfert de donnĂ©es en Gb/s, nous Ă©tudions l’algorithme de Viterbi (VA) avec un nombre limitĂ© d’états et un Ă©galiseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation amĂ©liore considĂ©rablement les performances par rapport Ă  la dĂ©tection de symbole. La DFE a une meilleure performance par rapport Ă  la VA en utilisant une complexitĂ© comparable. La DFE peut couvrir une plus grande mĂ©moire de canal avec un niveau de complexitĂ© relativement rĂ©duit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    The role of synchronization in digital communications using chaos - part I: fundamentals of digital communications.

    Get PDF
    In a digital communications system, data is transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a conventional system the analog sample functions sent through the channel are weighted sums of one or more sinusoids; in a chaotic communications system, the sample functions are segments of chaotic waveforms. At the receiver, the symbol may be recovered by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more characteristics of the sample functions are estimated. In a coherent receiver, synchronization is the most commonly used technique for recovering the sample functions from the received waveform. These sample functions are then used as reference signals for a correlator. Synchronization-based receivers have advantages over noncoherent ones in terms of noise performance and bandwidth efficiency. These advantages are lost if synchronization cannot be maintained, for example, under poor propagation conditions. In these circumstances, communication without synchronization may be preferable. The main aim of this paper is to provide a unified approach for the analysis and comparison of conventional and chaotic communications systems. In Part I, the operation of sinusoidal communications techniques is surveyed in order to clarify the role of synchronization and to classify possible demodulation methods for chaotic communication
    • 

    corecore