24,554 research outputs found

    Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    Get PDF
    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed

    Snow wetness measurements for melt forecasting

    Get PDF
    A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow

    The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP)

    Get PDF
    The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented

    Physics-based large-signal sensitivity analysis of microwave circuits using technological parametric sensitivity from multidimensional semiconductor device models

    Get PDF
    The authors present an efficient approach to evaluate the large-signal (LS) parametric sensitivity of active semiconductor devices under quasi-periodic operation through accurate, multidimensional physics-based models. The proposed technique exploits efficient intermediate mathematical models to perform the link between physics-based analysis and circuit-oriented simulations, and only requires the evaluation of dc and ac small-signal (dc charge) sensitivities under general quasi-static conditions. To illustrate the technique, the authors discuss examples of sensitivity evaluation, statistical analysis, and doping profile optimization of an implanted MESFET to minimize intermodulation which makes use of LS parametric sensitivities under two-tone excitatio

    A methodology for determining optimum microwave remote sensor parameters

    Get PDF
    There are no author-identified significant results in this report

    Reionization by active sources and its effects on the cosmic microwave background

    Get PDF
    We investigate the possible effects of reionization by active sources on the cosmic microwave background. We concentrate on the sources themselves as the origin of reionization, rather than early object formation, introducing an extra period of heating motivated by the active character of the perturbations. Using reasonable parameters, this leads to four possibilities depending on the time and duration of the energy input: delayed last scattering, double last scattering, shifted last scattering and total reionization. We show that these possibilities are only very weakly constrained by the limits on spectral distortions from the COBE FIRAS measurements. We illustrate the effects of these reionization possibilities on the angular power spectrum of temperature anisotropies and polarization for simple passive isocurvature models and simple coherent sources, observing the difference between passive and active models. Finally, we comment on the implications of this work for more realistic active sources, such as causal white noise and topological defect models. We show for these models that non-standard ionization histories can shift the peak in the CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version accepted for publication in Phys. Rev.

    Applications of ISES for vegetation and land use

    Get PDF
    Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management

    The Spaceborne Global Climate Observing Center (SGCOC): Executive summary

    Get PDF
    Conceptual planning of the Spaceborne portion of the Global Climate Observing Systems (SGCOS) is reviewed. Fundamentals of the SGCOS are summarized
    corecore