7,187 research outputs found

    Some Exact Results for the Exclusion Process

    Full text link
    The asymmetric simple exclusion process (ASEP) is a paradigm for non-equilibrium physics that appears as a building block to model various low-dimensional transport phenomena, ranging from intracellular traffic to quantum dots. We review some recent results obtained for the system on a periodic ring by using the Bethe Ansatz. We show that this method allows to derive analytically many properties of the dynamics of the model such as the spectral gap and the generating function of the current. We also discuss the solution of a generalized exclusion process with NN-species of particles and explain how a geometric construction inspired from queuing theory sheds light on the Matrix Product Representation technique that has been very fruitful to derive exact results for the ASEP.Comment: 21 pages; Proceedings of STATPHYS24 (Cairns, Australia, July 2010

    Nonequilibrium stationary states with Gibbs measure for two or three species of interacting particles

    Full text link
    We construct explicit examples of one-dimensional driven diffusive systems for two and three species of interacting particles, defined by asymmetric dynamical rules which do not obey detailed balance, but whose nonequilibrium stationary-state measure coincides with a prescribed equilibrium Gibbs measure. For simplicity, the measures considered in this construction only involve nearest-neighbor interactions. For two species, the dynamics thus obtained generically has five free parameters, and does not obey pairwise balance in general. The latter property is satisfied only by the totally asymmetric dynamics and the partially asymmetric dynamics with uniform bias, i.e., the cases originally considered by Katz, Lebowitz, and Spohn. For three species of interacting particles, with nearest-neighbor interactions between particles of the same species, the totally asymmetric dynamics thus obtained has two free parameters, and obeys pairwise balance. These models are put in perspective with other examples of driven diffusive systems. The emerging picture is that asymmetric (nonequilibrium) stochastic dynamics leading to a given stationary-state measure are far more constrained (in terms of numbers of free parameters) than the corresponding symmetric (equilibrium) dynamics.Comment: 18 pages, 8 tables, 1 figure. Stylistic and other minor improvement

    From interacting particle systems to random matrices

    Full text link
    In this contribution we consider stochastic growth models in the Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large time distribution and processes and their dependence on the class on initial condition. This means that the scaling exponents do not uniquely determine the large time surface statistics, but one has to further divide into subclasses. Some of the fluctuation laws were first discovered in random matrix models. Moreover, the limit process for curved limit shape turned out to show up in a dynamical version of hermitian random matrices, but this analogy does not extend to the case of symmetric matrices. Therefore the connections between growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor corrections in scaling of section 2.

    Open two-species exclusion processes with integrable boundaries

    Full text link
    We give a complete classification of integrable Markovian boundary conditions for the asymmetric simple exclusion process with two species (or classes) of particles. Some of these boundary conditions lead to non-vanishing particle currents for each species. We explain how the stationary state of all these models can be expressed in a matrix product form, starting from two key components, the Zamolodchikov-Faddeev and Ghoshal-Zamolodchikov relations. This statement is illustrated by studying in detail a specific example, for which the matrix Ansatz (involving 9 generators) is explicitly constructed and physical observables (such as currents, densities) calculated.Comment: 19 pages; typos corrected, more details on the Matrix Ansatz algebr

    TASEP hydrodynamics using microscopic characteristics

    Get PDF
    The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. In the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.Comment: 20 pages, 13 figures. This version is accepted for publication in Probability Surveys, February 20 201

    Exact connections between current fluctuations and the second class particle in a class of deposition models

    Full text link
    We consider a large class of nearest neighbor attractive stochastic interacting systems that includes the asymmetric simple exclusion, zero range, bricklayers' and the symmetric K-exclusion processes. We provide exact formulas that connect particle flux (or surface growth) fluctuations to the two-point function of the process and to the motion of the second class particle. Such connections have only been available for simple exclusion where they were of great use in particle current fluctuation investigations.Comment: Second version, results a bit more clear; 23 page

    Stochastic interacting particle systems out of equilibrium

    Full text link
    This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified picture is emerging at the macroscopic level, applicable, in our view, to real phenomena where diffusion is the dominating physical mechanism. We rely mainly on an approach developed by the authors based on the study of dynamical large fluctuations in stationary states of open systems. The outcome of this approach is a theory connecting the non equilibrium thermodynamics to the transport coefficients via a variational principle. This leads ultimately to a functional derivative equation of Hamilton-Jacobi type for the non equilibrium free energy in which local thermodynamic variables are the independent arguments. In the first part of the paper we give a detailed introduction to the microscopic dynamics considered, while the second part, devoted to the macroscopic properties, illustrates many consequences of the Hamilton-Jacobi equation. In both parts several novelties are included.Comment: 36 page
    • …
    corecore