71,669 research outputs found

    The Stability Region of the Two-User Interference Channel

    Full text link
    The stable throughput region of the two-user interference channel is investigated here. First, the stability region for the general case is characterized. Second, we study the cases where the receivers treat interference as noise or perform successive interference cancelation. Finally, we provide conditions for the convexity/concavity of the stability region and for which a certain interference management strategy leads to broader stability region.Comment: Accepted for publication at IEEE Information Theory Workshop 201

    Secure Communications for the Two-user Broadcast Channel with Random Traffic

    Full text link
    In this work, we study the stability region of the two-user broadcast channel (BC) with bursty data arrivals and security constraints. We consider the scenario, where one of the receivers has a secrecy constraint and its packets need to be kept secret from the other receiver. This is achieved by employing full-duplexing at the receiver with the secrecy constraint, so that it transmits a jamming signal to impede the reception of the other receiver. In this context, the stability region of the two-user BC is characterized for the general decoding case. Then, assuming two different decoding schemes the respective stability regions are derived. The effect of self-interference due to the full-duplex operation on the stability region is also investigated. The stability region of the BC with a secrecy constraint, where the receivers do not have full duplex capability can be obtained as a special case of the results derived in this paper. In addition, the paper considers the problem of maximizing the saturated throughput of the queue, whose packets does not require to be kept secret under minimum service guarantees for the other queue. The results provide new insights on the effect of the secrecy constraint on the stability region of the BC. In particular, it is shown that the stability region with secrecy constraint is sensitive to the coefficient of self-interference cancelation under certain cases.Comment: Submitted for journal publicatio

    On the Efficiency of Nash Equilibria in the Interference Channel with Noisy Feedback

    Get PDF
    International audienceIn this paper, the price of anarchy (PoA) and the price of stability (PoS) of the η-Nash equilibrium (η-NE), of the two-user linear deterministic interference channel with noisy channel-output feedback are characterized, with η > 0 arbitrarily small. The price of anarchy is the ratio between the sum-rate capacity and the smallest sum-rate at an η-NE. The price of stability is the ratio between the sum-rate capacity and the biggest sum-rate at an η-NE. Some of the main conclusions of this work are the following: (a) When both transmitter-receiver pairs are in low interference regime, the PoA can be made arbitrarily close to one as η approaches zero, subject to a particular condition. More specifically, there are scenarios in which even the worst η-NE (in terms of sum-rate) is arbitrarily close to the Pareto boundary of the capacity region. (b) The use of feedback plays a fundamental role on increasing the PoA, in some interference regimes. This is basically because in these regimes, the use of feedback increases the sum-capacity, whereas the smallest sum-rate at an η-NE remains the same. (c) The PoS is equal to one in all interference regimes. This implies that there always exists an η-NE in the Pareto boundary of the capacity region. The ensemble of conclusions of this work reveal the relevance of jointly using equilibrium selection methods and channel-output feedback for reducing the effect of anarchical behavior of the network components in the η-NE sum-rate of the interference channel

    Channel-Aware Random Access in the Presence of Channel Estimation Errors

    Full text link
    In this work, we consider the random access of nodes adapting their transmission probability based on the local channel state information (CSI) in a decentralized manner, which is called CARA. The CSI is not directly available to each node but estimated with some errors in our scenario. Thus, the impact of imperfect CSI on the performance of CARA is our main concern. Specifically, an exact stability analysis is carried out when a pair of bursty sources are competing for a common receiver and, thereby, have interdependent services. The analysis also takes into account the compound effects of the multipacket reception (MPR) capability at the receiver. The contributions in this paper are twofold: first, we obtain the exact stability region of CARA in the presence of channel estimation errors; such an assessment is necessary as the errors in channel estimation are inevitable in the practical situation. Secondly, we compare the performance of CARA to that achieved by the class of stationary scheduling policies that make decisions in a centralized manner based on the CSI feedback. It is shown that the stability region of CARA is not necessarily a subset of that of centralized schedulers as the MPR capability improves.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Cambridge, MA, USA, July 201

    Coalitions in Cooperative Wireless Networks

    Full text link
    Cooperation between rational users in wireless networks is studied using coalitional game theory. Using the rate achieved by a user as its utility, it is shown that the stable coalition structure, i.e., set of coalitions from which users have no incentives to defect, depends on the manner in which the rate gains are apportioned among the cooperating users. Specifically, the stability of the grand coalition (GC), i.e., the coalition of all users, is studied. Transmitter and receiver cooperation in an interference channel (IC) are studied as illustrative cooperative models to determine the stable coalitions for both flexible (transferable) and fixed (non-transferable) apportioning schemes. It is shown that the stable sum-rate optimal coalition when only receivers cooperate by jointly decoding (transferable) is the GC. The stability of the GC depends on the detector when receivers cooperate using linear multiuser detectors (non-transferable). Transmitter cooperation is studied assuming that all receivers cooperate perfectly and that users outside a coalition act as jammers. The stability of the GC is studied for both the case of perfectly cooperating transmitters (transferrable) and under a partial decode-and-forward strategy (non-transferable). In both cases, the stability is shown to depend on the channel gains and the transmitter jamming strengths.Comment: To appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Communication Systems, 200

    Coalitional Games for Transmitter Cooperation in MIMO Multiple Access Channels

    Full text link
    Cooperation between nodes sharing a wireless channel is becoming increasingly necessary to achieve performance goals in a wireless network. The problem of determining the feasibility and stability of cooperation between rational nodes in a wireless network is of great importance in understanding cooperative behavior. This paper addresses the stability of the grand coalition of transmitters signaling over a multiple access channel using the framework of cooperative game theory. The external interference experienced by each TX is represented accurately by modeling the cooperation game between the TXs in \emph{partition form}. Single user decoding and successive interference cancelling strategies are examined at the receiver. In the absence of coordination costs, the grand coalition is shown to be \emph{sum-rate optimal} for both strategies. Transmitter cooperation is \emph{stable}, if and only if the core of the game (the set of all divisions of grand coalition utility such that no coalition deviates) is nonempty. Determining the stability of cooperation is a co-NP-complete problem in general. For a single user decoding receiver, transmitter cooperation is shown to be \emph{stable} at both high and low SNRs, while for an interference cancelling receiver with a fixed decoding order, cooperation is stable only at low SNRs and unstable at high SNR. When time sharing is allowed between decoding orders, it is shown using an approximate lower bound to the utility function that TX cooperation is also stable at high SNRs. Thus, this paper demonstrates that ideal zero cost TX cooperation over a MAC is stable and improves achievable rates for each individual user.Comment: in review for publication in IEEE Transactions on Signal Processin
    corecore