814 research outputs found

    Finite planar emulators for K_{4,5} - 4K_2 and K_{1,2,2,2} and Fellows' Conjecture

    Get PDF
    In 1988 Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K_{4,5} - 4K_2. Archdeacon showed that K_{4,5} - 4K_2 does not admit a finite planar cover; thus K_{4,5} - 4K_2 provides a counterexample to Fellows' Conjecture. It is known that Negami's Planar Cover Conjecture is true if and only if K_{1,2,2,2} admits no finite planar cover. We construct a finite planar emulator for K_{1,2,2,2}. The existence of a finite planar cover for K_{1,2,2,2} is still open.Comment: Final version. To appear in European Journal of Combinatoric

    Maps, immersions and permutations

    Full text link
    We consider the problem of counting and of listing topologically inequivalent "planar" {4-valent} maps with a single component and a given number n of vertices. This enables us to count and to tabulate immersions of a circle in a sphere (spherical curves), extending results by Arnold and followers. Different options where the circle and/or the sphere are/is oriented are considered in turn, following Arnold's classification of the different types of symmetries. We also consider the case of bicolourable and bicoloured maps or immersions, where faces are bicoloured. Our method extends to immersions of a circle in a higher genus Riemann surface. There the bicolourability is no longer automatic and has to be assumed. We thus have two separate countings in non zero genus, that of bicolourable maps and that of general maps. We use a classical method of encoding maps in terms of permutations, on which the constraints of "one-componentness" and of a given genus may be applied. Depending on the orientation issue and on the bicolourability assumption, permutations for a map with n vertices live in S(4n) or in S(2n). In a nutshell, our method reduces to the counting (or listing) of orbits of certain subset of S(4n) (resp. S(2n)) under the action of the centralizer of a certain element of S(4n) (resp. S(2n)). This is achieved either by appealing to a formula by Frobenius or by a direct enumeration of these orbits. Applications to knot theory are briefly mentioned.Comment: 46 pages, 18 figures, 9 tables. Version 2: added precisions on the notion used for the equivalence of immersed curves, new references. Version 3: Corrected typos, one array in Appendix B1 was duplicated by mistake, the position of tables and the order of the final sections have been modified, results unchanged. To be published in the Journal of Knot Theory and Its Ramification

    On Stein fillings of contact torus bundles

    Get PDF
    We consider a large family F of torus bundles over the circle, and we use recent work of Li--Mak to construct, on each Y in F, a Stein fillable contact structure C. We prove that (i) each Stein filling of (Y,C) has vanishing first Chern class and first Betti number, (ii) if Y in F is elliptic then all Stein fillings of (Y,C) are pairwise diffeomorphic and (iii) if Y in F is parabolic or hyperbolic then all Stein fillings of (Y,C) share the same Betti numbers and fall into finitely many diffeomorphism classes. Moreover, for infinitely many hyperbolic torus bundles Y in F we exhibit non-homotopy equivalent Stein fillings of (Y,C).Comment: 18 pages, 10 figures. This preprint version differs from the final version which is to appear in the Bulletin of the London Mathematical Societ

    Prediction of RNA pseudoknots by Monte Carlo simulations

    Full text link
    In this paper we consider the problem of RNA folding with pseudoknots. We use a graphical representation in which the secondary structures are described by planar diagrams. Pseudoknots are identified as non-planar diagrams. We analyze the non-planar topologies of RNA structures and propose a classification of RNA pseudoknots according to the minimal genus of the surface on which the RNA structure can be embedded. This classification provides a simple and natural way to tackle the problem of RNA folding prediction in presence of pseudoknots. Based on that approach, we describe a Monte Carlo algorithm for the prediction of pseudoknots in an RNA molecule.Comment: 22 pages, 14 figure
    • …
    corecore