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a b s t r a c t

In 1988 Fellows conjectured that if a finite, connected graph admits
a finite planar emulator, then it admits a finite planar cover. We
construct a finite planar emulator for K4,5 − 4K2. Archdeacon [Dan
Archdeacon, Two graphswithout planar covers, J. Graph Theory, 41
(4) (2002) 318–326] showed that K4,5−4K2 does not admit a finite
planar cover; thusK4,5−4K2 provides a counterexample to Fellows’
Conjecture.
It is known that Negami’s Planar Cover Conjecture is true if and

only if K1,2,2,2 admits no finite planar cover. We construct a finite
planar emulator for K1,2,2,2. The existence of a finite planar cover
for K1,2,2,2 is still open.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We begin by defining the main concepts used in this paper. All graphs considered are assumed to
be finite and simple. Amap between graphs is assumed tomap vertices to vertices and edges to edges.
Let G̃ and G be graphs. We say that G̃ is a cover (resp. emulator) of G if there exists a map f : G̃ → G
so that f is surjective and for any vertex ṽ of G̃, the map induced by f from the neighbors of ṽ to the
neighbors of f (ṽ) is a bijection (resp. surjection). A cover (resp. emulator) is called regular if there is
a subgroup Γ ≤ Aut (̃G) (the automorphism group of G̃) so that G ∼= G̃/Γ , and f is equivalent to the
natural projection. In this paper, regular covers and emulators are only used when citing results of
Negami and Kitakubo; for detailed definitions see [10] (for covers) and [8] (for emulators). We note
that Kitakubo used the term branched covers for emulators.
Let i : S2 → RP2 be the projection from the sphere to the projective plane given by identifying

antipodal points. If a graph G embeds in RP2, then i−1(G) is a planar double cover of G. Conversely,
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in [10] Negami proved that if a connected graph G admits a finite planar regular cover, then G embeds
in RP2. Negami conjectured that this holds in general:

Conjecture 1 (Negami’s Planar Cover Conjecture). A connected graph has a finite planar cover if and only
if it embeds in the projective plane.

Kitakubo generalized Negami’s theorem, showing that if a graph has a finite planar regular
emulator, then it embeds in the projective plane. (The authors gave a further generalization in [12].)
The following conjecture appears in [11, Conjecture 2], where Negami attributes it to Kitakubo:

Conjecture 2. A connected graph has a finite planar emulator if and only if it embeds in the projective
plane.

Prior to Kitakubo, planar emulatorswere studied by Fellows [3,4],whoposed the conjecture below;
see, for example, [6, Conjecture 4] or [11]:

Conjecture 3 (Fellows). A connected graph has a finite planar emulator if and only if it has a finite planar
cover.

In [6] Hliněný constructed a graph that admits an emulator that embeds in the genus 3 surface, but
does not admit a cover that embeds there.
In this note we prove:

Theorem 4. The graphs K4,5 − 4K2 and K1,2,2,2 admit finite planar emulators.

Archdeacon [2] proved that K4,5 − 4K2 does not admit a finite planar cover. Together with
Theorem 4, we get:

Corollary 5. The graph K4,5 − 4K2 gives a counterexample to Conjectures 2 and 3.

It is known that K1,2,2,2 does not embed inRP2 [5]. Hence, if it admits a finite planar cover, Negami’s
Planar Cover Conjecture is false. The work of Archdeacon, Fellows, Hliněný, and Negami shows that
the converse also holds, and Negami’s Planar Cover Conjecture is in fact equivalent to K1,2,2,2 having
no finite planar cover; see, for example, [11] or [7] and references therein. At the time of writing, the
existence of a finite planar cover to K1,2,2,2 remains an intriguing open question. However, Theorem 4
shows that K1,2,2,2 does admit a finite planar emulator. Perhaps this should not be seen as evidence
against Negami’s Planar Cover Conjecture. Perhaps this should be seen as evidence that finite planar
emulators are ubiquitous (although clearly not all graphs have finite planar emulators). We note that
if Negami’s Planar Cover Conjecture holds, then the existence of a finite planar cover can be decided in
linear time [9]; the set of forbiddenminors is given by Archdeacon [1]. By Robertson and Seymour [14]
there is a set of forbidden minors for existence of a finite planar emulator; therefore [13] existence of
such an emulator can be decided in polynomial time.

Question 6. What graphs admit finite planar emulators? What is the set of forbidden minors? Construct
an algorithm to decide if a given graph admits a finite planar emulator. What is the complexity of this
problem?

In Section 2 we explicitly show an emulator with 50 vertices for K4,5 − 4K2 and in Section 3 we
explicitly show an emulator with 266 vertices for K1,2,2,2, thus proving Theorem 4. The emulator for
K1,2,2,2 is symmetric and quotients out to an emulator with 133 vertices that embeds in RP2.

2. A finite planar emulator for K4,5 − 4K2

An emulator for K4,5 − 4K2 is given in Fig. 2. We explain how to read this graph. K4,5 − 4K2 is
constructed as follows: start with the 1-skeleton of a cube (Fig. 1) and add a ninth vertex, denoted v,
that is connected to the vertices of the cube labeled 1, 3, 5, and 7. The graph shown in Fig. 2 maps to
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Fig. 1.

Fig. 2. A finite planar emulator of K4,5 − 4K2 .

K4,5 − 4K2; each vertex is shown as a small circle labeled by the vertex of K4,5 − 4K2 it gets sent to. It
can be checked directly that it is a finite planar emulator of K4,5 − 4K2.
Remarks.

(1) It is easy to see how the graph was put together. It is made of 8 white ‘‘triangles’’, each triangle
meeting 3 others (this pattern can be seen by taking the convex hull of the midpoints of the edges
of a cube or an octahedron). Each triangle is simply a corner of the cube (3 squares).

(2) Note that the graph presented in Fig. 2 is not a cover of K4,5 − 4K2. For example, we can find a
vertex with label 0 which is adjacent to two vertices labeled 3.

3. A finite planar emulator for K1,2,2,2

An emulator for K1,2,2,2 is derived from Fig. 3. We explain how to read this graph. K1,2,2,2 is
constructed as follows: start with the 1-skeleton of an octahedron (Fig. 1) and add a seventh vertex,
denoted v, that is connected to all the vertices of the octahedron. The graph shown in Fig. 3 maps to
the 1-skeleton of the octahedron; each vertex is shown as a small circle labeled by the vertex of the
octahedron it gets sent to. It can be checked directly that it is a finite planar emulator of the 1-skeleton
of the octahedron.
Note that some of the faces have been shaded (this includes the outside face). We add a vertex in

each of these faces. These vertices all map to v and are connected to every vertex on the boundary of
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Fig. 3. A finite planar emulator of K1,2,2,2 .

the shaded cells. On the boundary of each shaded face we see all the labels, so each of the vertices that
map to v has all the necessary neighbors. Finally, we see that each vertex in Fig. 3 is on the boundary
of at least one shaded face; hence, every vertex has a neighbor that maps to v.
This completes our construction of a finite planar emulator of K1,2,2,2.

Remark. By viewing S2 as the boundary of the convex hull of the midpoints of the edges of the cube or
the octahedron, we may draw the emulator for K1,2,2,2 symmetrically, so that it is invariant under the
antipodal involution. The quotient gives an emulator for K1,2,2,2 that has 133 vertices and embeds in
RP2. This symmetric presentation of the emulator of K1,2,2,2 reveals another interesting property. By
considering the eight triangular faces (each shown in Fig. 3 as a white triangle with a single shaded
face), we can see that they are formed from the union of 4 great circles, one with the labels 0, 1, 2, one
with the labels 2, 3, 4, one with the labels 1, 3, 5, and one with the labels 0, 4, 5. Note that if we make
the octahedron in Fig. 1 with two alternating colors, the faces with these labels correspond exactly to
the faces of one color.
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