33,791 research outputs found

    The source-item coverage of the exponential function

    No full text
    International audienceStatistical distributions in the production of information are most often studied in the framework of Lotkaian informetrics. In this article, we recall some results of basic theory of Lotkaian informetrics, then we transpose methods (Theorem1) applied to Lotkaian distributions by Leo Egghe (Theorem 2) to the exponential distributions (Theorem 3, Theorem 4). We give examples and compare the results (Theorem 5). Finally, we propose to widen the problem using the concept of exponential informetric process (Theorem 6).Les distributions statistiques dans le domaine de la production d'information sont le plus souvent étudiées dans le cadre de l'infométrie lotkaienne. Dans cet article, nous rappelons les résultats de base de la théorie lotkaienne, puis nous transposons les méthodes (théorème 1) appliquées aux distributions lotkaiennes par Leo Egghe (Théorème 2) aux distributions exponentielles (Théorème 3, Théorème 4). Nous donnons des exemples, puis nous élargissons le problème au concept de processus exponentiel infométrique (Théorème 6

    Recommending Items in Social Tagging Systems Using Tag and Time Information

    Full text link
    In this work we present a novel item recommendation approach that aims at improving Collaborative Filtering (CF) in social tagging systems using the information about tags and time. Our algorithm follows a two-step approach, where in the first step a potentially interesting candidate item-set is found using user-based CF and in the second step this candidate item-set is ranked using item-based CF. Within this ranking step we integrate the information of tag usage and time using the Base-Level Learning (BLL) equation coming from human memory theory that is used to determine the reuse-probability of words and tags using a power-law forgetting function. As the results of our extensive evaluation conducted on data-sets gathered from three social tagging systems (BibSonomy, CiteULike and MovieLens) show, the usage of tag-based and time information via the BLL equation also helps to improve the ranking and recommendation process of items and thus, can be used to realize an effective item recommender that outperforms two alternative algorithms which also exploit time and tag-based information.Comment: 6 pages, 2 tables, 9 figure

    Bootstrap predictive inference for ARIMA processes

    Get PDF
    In this study, we propose a new bootstrap strategy to obtain prediction intervals for autoregressive integrated moving-average processes. Its main advantage over other bootstrap methods previously proposed for autoregressive integrated processes is that variability due to parameter estimation can be incorporated into prediction intervals without requiring the backward representation of the process. Consequently, the procedure is very flexible and can be extended to processes even if their backward representation is not available. Furthermore, its implementation is very simple. The asymptotic properties of the bootstrap prediction densities are obtained. Extensive finite-sample Monte Carlo experiments are carried out to compare the performance of the proposed strategy vs. alternative procedures. The behaviour of our proposal equals or outperforms the alternatives in most of the cases. Furthermore, our bootstrap strategy is also applied for the first time to obtain the prediction density of processes with moving-average components.Publicad

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798
    • …
    corecore