501 research outputs found

    The simplex algorithm with the pivot rule of maximizing criterion improvement

    Get PDF
    AbstractWe extend a result of Klee and Minty by showing that the Simplex Algorithm with the pivot rule of maximizing criterion improvement is not a good algorithm in the sense of Edmonds. The method of proof extends to other similar pivot rules

    A unified worst case for classical simplex and policy iteration pivot rules

    Full text link
    We construct a family of Markov decision processes for which the policy iteration algorithm needs an exponential number of improving switches with Dantzig's rule, with Bland's rule, and with the Largest Increase pivot rule. This immediately translates to a family of linear programs for which the simplex algorithm needs an exponential number of pivot steps with the same three pivot rules. Our results yield a unified construction that simultaneously reproduces well-known lower bounds for these classical pivot rules, and we are able to infer that any (deterministic or randomized) combination of them cannot avoid an exponential worst-case behavior. Regarding the policy iteration algorithm, pivot rules typically switch multiple edges simultaneously and our lower bound for Dantzig's rule and the Largest Increase rule, which perform only single switches, seem novel. Regarding the simplex algorithm, the individual lower bounds were previously obtained separately via deformed hypercube constructions. In contrast to previous bounds for the simplex algorithm via Markov decision processes, our rigorous analysis is reasonably concise

    Tropicalizing the simplex algorithm

    Full text link
    We develop a tropical analog of the simplex algorithm for linear programming. In particular, we obtain a combinatorial algorithm to perform one tropical pivoting step, including the computation of reduced costs, in O(n(m+n)) time, where m is the number of constraints and n is the dimension.Comment: v1: 35 pages, 7 figures, 4 algorithms; v2: improved presentation, 39 pages, 9 figures, 4 algorithm

    The Complexity of the Simplex Method

    Get PDF
    The simplex method is a well-studied and widely-used pivoting method for solving linear programs. When Dantzig originally formulated the simplex method, he gave a natural pivot rule that pivots into the basis a variable with the most violated reduced cost. In their seminal work, Klee and Minty showed that this pivot rule takes exponential time in the worst case. We prove two main results on the simplex method. Firstly, we show that it is PSPACE-complete to find the solution that is computed by the simplex method using Dantzig's pivot rule. Secondly, we prove that deciding whether Dantzig's rule ever chooses a specific variable to enter the basis is PSPACE-complete. We use the known connection between Markov decision processes (MDPs) and linear programming, and an equivalence between Dantzig's pivot rule and a natural variant of policy iteration for average-reward MDPs. We construct MDPs and show PSPACE-completeness results for single-switch policy iteration, which in turn imply our main results for the simplex method

    Learning to Pivot as a Smart Expert

    Full text link
    Linear programming has been practically solved mainly by simplex and interior point methods. Compared with the weakly polynomial complexity obtained by the interior point methods, the existence of strongly polynomial bounds for the length of the pivot path generated by the simplex methods remains a mystery. In this paper, we propose two novel pivot experts that leverage both global and local information of the linear programming instances for the primal simplex method and show their excellent performance numerically. The experts can be regarded as a benchmark to evaluate the performance of classical pivot rules, although they are hard to directly implement. To tackle this challenge, we employ a graph convolutional neural network model, trained via imitation learning, to mimic the behavior of the pivot expert. Our pivot rule, learned empirically, displays a significant advantage over conventional methods in various linear programming problems, as demonstrated through a series of rigorous experiments
    • …
    corecore