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ABSTRACT
The simplex method is a well-studied and widely-used piv-
oting method for solving linear programs. When Dantzig
originally formulated the simplex method, he gave a natu-
ral pivot rule that pivots into the basis a variable with the
most violated reduced cost. In their seminal work, Klee and
Minty showed that this pivot rule takes exponential time in
the worst case. We prove two main results on the simplex
method. Firstly, we show that it is PSPACE-complete to find
the solution that is computed by the simplex method us-
ing Dantzig’s pivot rule. Secondly, we prove that deciding
whether Dantzig’s rule ever chooses a specific variable to en-
ter the basis is PSPACE-complete. We use the known connec-
tion between Markov decision processes (MDPs) and linear
programming, and an equivalence between Dantzig’s pivot
rule and a natural variant of policy iteration for average-
reward MDPs. We construct MDPs and then show PSPACE-
completeness results for single-switch policy iteration, which
in turn imply our main results for the simplex method.

Categories and Subject Descriptors
G.1.6 [Optimization]: Linear programming

Keywords
Linear programming; The simplex method; Dantzig’s pivot
rule; Markov decision processes; Policy Iteration

1. INTRODUCTION
Linear programming is a fundamental technique that is

used throughout computer science. The existence of a strongly
polynomial algorithm for linear programming is a major
open problem in this area, which was included, alongside
P vs NP and the Riemann hypothesis, in Smale’s list of
great unsolved problems of the 21st century [24]. Of course,

∗A full version of this paper, with all proofs included, is
available at http://arxiv.org/abs/1404.0605.

.

it is well known that linear programming problems can be
solved in polynomial time by using algorithms such as the
ellipsoid method or interior point methods, but all of these
have running times that depend on the number of binary
digits needed to represent the numbers used in the LP, and
so they are not strongly polynomial.

A natural way to tackle this problem is to design a strongly
polynomial pivot rule for the simplex method. The simplex
method, originally proposed by Dantzig [5], is a local im-
provement technique for solving linear programs by pivoting
between basic feasible solutions. In each step, the algorithm
uses a pivot rule to determine which variable is pivoted into
the basis. Dantzig’s formulation of the simplex method used
a particularly natural pivot rule, which we will call Dantzig’s
pivot rule: in each step, the variable with the most negative
reduced cost is chosen to enter the basis [5].

Although the simplex method is known to work well in
practice, Klee and Minty showed that Dantzig’s pivot rule
takes exponential time in the worst case [16]. There has
been much subsequent work on developing pivot rules for the
simplex method, but all known pivot rules have exponential
worst case running time: Friedmann’s recent exponential
lower bound against Zadeh’s pivot rule has eliminated the
last major pivot rule for which the worst case running time
was unknown [10].

If our goal is to design a strongly polynomial pivot rule,
then we must understand what aspects of existing pivot rules
make them unsuitable. In this paper, we take a complexity-
theoretic approach to answering this question. This line of
work was initiated by Disser and Skutella [6], who showed
that the following problem is NP-hard. Given a linear pro-
gram L, a variable v, and a initial basic feasible solution b in
which v is not basic, the problem BasisEntry(L, b, v) asks:
if Dantzig’s pivot rule is started at b, will it ever choose
variable v to enter the basis? They also showed a variety
of related results for Dantzig’s network simplex algorithm
applied to network flow problems.

Another recent result along these lines was given by Adler,
Papadimitriou and Rubinstein [2], who studied a slightly
different problem that they called the path problem: given
an LP and a basic feasible solution b, decide whether the
simplex method ever visits b. They show that there exists a
highly artificial pivot rule for which this problem is in fact
PSPACE-complete. They speculate that many other primal
pivoting rules may share this property, and as a first step
in that direction, they explicitly conjectured that a similar
result could be shown for Dantzig’s pivot rule, but noted
that their techniques would not be sufficient to show this,
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and left it as a challenging open problem.
In the first main theorem of this paper, we strengthen

the result of Disser and Skutella, and (essentially) confirm
the conjecture of Adler, Papadimitriou and Rubinstein. We
show that the following theorem holds, regardless of the de-
generacy resolution rule used by Dantzig’s pivot rule.

Theorem 1. BasisEntry is PSPACE-complete.

Theorem 1 proves a property about the path taken by the
simplex method during its computation, but we can also
ask about the complexity of finding the solution that is pro-
duced by the simplex method. More precisely, we are inter-
ested in the following problem: given a linear program L, an
initial basic feasible solution b, and a variable v, the prob-
lem DantzigLpSol(L, b, v) asks: if Dantzig’s pivot rule is
started at basis b, and finds an optimal solution s, is variable
v basic in s?

Questions of this nature have been widely studied for
problems in PPAD and PLS. For example, the problem of find-
ing an equilibrium in a bimatrix game is PPAD-complete [4],
and this problem can be solved by applying the comple-
mentary pivoting approach of Lemke and Howson. It has
been shown that it is PSPACE-complete to find any of the
equilibria of a bimatrix game that can be computed by the
Lemke-Howson algorithm [13]. For the local search prob-
lems in PLS [15], the notion of a tight-PLS reduction plays
a similar role (see, e.g., [26]). If a problem is shown to be
tight-PLS-complete, then it is PSPACE-complete to find the
solution that is produced by the natural algorithm that fol-
lows the suggested local improvement in each step [19, 22].
Thus far, however, this type of result has only been proved
for algorithms that solve problems where the complexity of
finding any solution is provably hard: either PLS-complete
or PPAD-complete.

The simplex method is both a complementary pivoting
algorithm and a local search technique. Our second main
theorem shows that, despite the fact that linear program-
ming is in P, similar properties can be shown to hold. Once
again, the following theorem holds regardless of the degen-
eracy resolution rule used by Dantzig’s pivot rule.

Theorem 2. DantzigLpSol is PSPACE-complete.

This theorem suggests that PSPACE-completeness results for
finding the solution produced by a particular algorithm may
be much more widespread than previously thought. For ex-
ample, when Monien and Tscheuschner showed a PSPACE-
completeness result for the natural algorithm for finding a
locally-optimal maximum cut on graphs of degree four [18],
they saw this as evidence that the problem may be tight-PLS-
complete, but this line of reasoning seems less appealing in
light of Theorem 2.

Techniques.
In order to prove Theorems 1 and 2, we make use of a

known connection between the simplex method for linear
programming and policy iteration algorithms for Markov de-
cision processes (MDPs), which are discrete-time stochastic
control processes [21]. The problem of finding an optimal
policy in an MDP can be solved in polynomial time by a re-
duction to linear programming. However, policy iteration is
a local search technique that is often used as an alternative.
Policy iteration starts at an arbitrary policy. In each policy
it assigns each action an appeal, and if an action has positive

appeal, then switching this action creates a strictly better
policy. Thus, policy iteration proceeds by repeatedly switch-
ing a subset of switchable actions, until it finds a policy with
no switchable actions. The resulting policy is guaranteed to
be optimal.

We use the following connection: If a policy iteration al-
gorithm for an MDP makes only a single switch in each iter-
ation, then it corresponds directly to the simplex method for
the corresponding linear program. In particular, Dantzig’s
pivot rule corresponds to the natural switching rule for pol-
icy iteration that always switches the action with highest
appeal. We call this Dantzig’s rule. This connection is well
known, and has been applied in other contexts. Friedmann,
Hansen, and Zwick used this connection in the expected
total-reward setting, to show sub-exponential lower bounds
for some randomized pivot rules [12]. Post and Ye have
shown that Dantzig’s pivot rule is strongly polynomial for
deterministic discounted MDPs [20], while Hansen, Kaplan,
and Zwick went on to prove various further bounds for this
setting [14].

We define two problems for Dantzig’s rule, which corre-
spond to the two problems that we study in the linear pro-
gramming setting. LetM be an MDP, σ be a starting policy,
and a be an action. The problem ActionSwitch(M, σ, a)
asks: if Dantzig’s rule is started at some policy σ that
does not use a, will it ever switch action a? The problem
DantzigMdpSol(M, σ, a) asks: if σ∗ is the optimal policy
that is found when Dantzig’s rule is started at σ, does σ∗

use action a? We will show the following pair of theorems.

Theorem 3. ActionSwitch is PSPACE-complete.

Theorem 4. DantzigMdpSol is PSPACE-complete.

Policy iteration is a well-studied and widely-used method,
so these theorems are of interest in their own right. Since we
show that Dantzig’s switching rule corresponds to Dantzig’s
pivot rule on a certain LP, these two theorems immediately
imply that BasisEntry and DantzigLpSol are PSPACE-
complete (Theorems 1 and 2, respectively). The majority of
the paper is dedicated to proving Theorem 3; we then add
one extra gadget to our construction to prove Theorem 4.

Related work.
There has been a recent explosion of interest in the com-

plexity of pivot rules for the simplex method, and of switch-
ing rules for policy iteration. The original spark for this line
of work was a result of Friedmann, which showed an expo-
nential lower bound for the all-switches variant of strategy
improvement for two-player parity games [8, 9]. Fearnley
then showed that the second player in Friedmann’s construc-
tion can be simulated by a probabilistic action, and used this
to show an exponential lower bound for the all-switches vari-
ant of policy iteration for average-reward MDPs [7]. Fried-
mann, Hansen, and Zwick then showed a sub-exponential
lower bound for the random facet strategy improvement al-
gorithm for parity games [11], and then utilised Fearnley’s
construction to extend the bound to the random facet pivot
rule for the simplex method [12].

It is generally accepted that the simplex algorithm per-
forms well in practice. Our strong worst-case negative result
should be understood in the context of a long line of work
that has attempted to explain the good behaviour of the sim-
plex algorithm. This started with probabilistic analyses of



the expected running time of variants of the simplex method
by Adler and Megiddo [1], Borgwardt [3], and Smale [23].
Later, in seminal work, Spielman and Teng [25] defined the
concept of smoothed analysis and showed that the simplex
algorithm has polynomial smoothed complexity.

2. PRELIMINARIES

Markov decision processes.
A Markov decision process (MDP) is defined by a tuple
M = (S, (As)s∈S , p, r), where S gives the set of states in
the MDP. For each state s ∈ S, the set As gives the actions
available at s. We also define A =

⋃
sAs to be the set

of all actions in M. For each action a ∈ As, the function
p(s′, a) gives the probability of moving from s to s′ when
using action a. Obviously, we must have

∑
s′∈S p(s

′, a) = 1,
for every action a ∈ A. Finally, for each action a ∈ A, the
function r(a) gives a rational reward for using action a. A
policy is a function σ : S → A, which for each state s selects
an action from As. We define Σ to be the set of all policies.

We use the expected total reward optimality criterion. Max-
imizing the expected total reward is equivalent to solving the
system of optimality equations, where for each state s ∈ S
we have:

Val(s) = max
a∈As

(
r(a) +

∑
s′∈S

p(s′, a) ·Val(s′)

)
. (1)

It has been shown that, if these equations have a solution,
then Val(s) gives the maximal expected total reward that
can be obtained when starting in state s [21].

Policy iteration.
Policy iteration is an algorithm for finding solutions to the

optimality equations. For each policy σ ∈ Σ, we define the
following system of linear equations:

Valσ(s) = r(σ(s)) +
∑
s′∈S

p(s′, σ(s)) ·Valσ(s′). (2)

In a solution of this system, Valσ(s) gives the expected total
reward obtained by following σ from state s. For each policy
σ ∈ Σ, each state s, and each action a ∈ As we define:

Appealσ(a) =

(
r(a) +

∑
s′∈S

p(s′, a) ·Valσ(s′)

)
−Valσ(s).

(3)
We say that action a ∈ As is switchable in σ if Appealσ(a) >
0. Switching an action a at a state s in a policy σ creates a
new policy σ′ such that σ′(s) = a, and σ′(s′) = σ(s′) for all
states s′ 6= s.

We define a partial order over policies according to their
values. If σ, σ′ ∈ Σ, then we say that σ ≺ σ′ if and only if

Valσ
′
(s) ≥ Valσ(s) for every state s, and there exists a state

s′ for which Valσ
′
(s′) > Valσ(s′). We have the following

theorem.

Theorem 5 ([21]). If σ is a policy and σ′ is a policy
that is obtained by switching a switchable action in σ then
we have σ ≺ σ′.

Policy iteration starts at an initial policy σ0. In iteration i,
it switches a switchable action in σi−1 to create a new policy

σi. Since there are finitely many policies in Σ, Theorem 5
implies that it must eventually reach a policy σ∗ with no
switchable actions. By definition, a policy with no switch-
able actions is a solution to Equation (1), so σ∗ is an optimal
policy, and the algorithm terminates.

One technical complication of our result is that the MDPs
that we construct do not actually fall into a class of MDPs
for which total-reward policy iteration is known to work. For
that reason, in the full version of this paper, we formally
define our results in terms of the expected average reward
optimality criterion. We show that, for the policies that we
consider in our construction, policy iteration for total reward
MDPs behaves in exactly the same way as policy iteration
for average reward MDPs. Thus, it is valid to describe our
result in terms of expected total reward.

Dantzig’s rule.
Policy iteration uses a switching rule to determine which

switchable action should be switched in each step. In this
paper, we concentrate on Dantzig’s switching rule, which
always selects an action with maximal appeal. More for-
mally, if σ is a policy with at least one switchable action,
then Dantzig’s switching rule selects an action a such that
Appealσ(a) is equal to:

max{Appealσ(a′) : a′ ∈ A and Appealσ(a′) > 0}. (4)

If more than one action satisfies this equation, then Dantzig’s
switching rule selects one arbitrarily. Our PSPACE complete-
ness results hold no matter how ties are broken. We will
refer to the policy iteration algorithm that always follows
Dantzig’s switching rule as Dantzig’s rule.

The connection with linear programming.
There is a strong connection between policy iteration for

Markov decision processes, and the simplex method for lin-
ear programming. In particular, for a number of classes of
MDPs there is a well-known reduction to linear program-
ming, which essentially encodes the optimality equations as
a linear program. In the full version of the paper, we show
formally that maximizing the expected total reward in our
construction can be written down as a linear program. Fur-
thermore, we show that, on this LP, the simplex algorithm
equipped with Dantzig’s pivot rule corresponds exactly to
policy iteration equipped with Dantzig’s switching policy.

When Dantzig’s pivot rule is applied in linear program-
ming, a degeneracy resolution rule is required to prevent the
algorithm from cycling. This rule picks the entering variable
and leaving variable in the case of ties. In our formulation,
the leaving variable is always unique. The entering variable
is determined according to Equation (4). Since our PSPACE-
completeness results for MDPs hold no matter how ties are
broken, our PSPACE-completeness results for Dantzig’s pivot
rule will also hold no matter which degeneracy resolution
rule is used. Thus, the main technical challenge of the
paper is to show that the problems ActionSwitch and
DantzigMdpSol, which were defined in the introduction,
are PSPACE-complete problems.

The appeal reduction gadget.
We now describe the appeal reduction gadget, which will be

frequently used in our construction. This gadget allows us to
control the action that is switched by Dantzig’s rule. Similar
gadgets were used by Melekopoglou and Condon to show an



exponential-time lower bound for Dantzig’s rule [17], and by
Fearnley to show an exponential-time lower bound against
the all-switches rule [7].

The gadget is shown in Figure 1. Throughout the paper,
we will use the following diagramming notation for MDPs.
States are represented as boxes, and the name of the state is
displayed in the center of the box. Each action is represented
by an arrow that is annotated by a reward. If an action has
more than one possible destination state then the arrow will
split, and the reward is displayed before the split, while the
transition probabilities are displayed after the split. The left
half of Figure 1 diagram shows the gadget itself, and the
right half shows our diagramming shorthand for the gadget:
whenever we use this shorthand in our diagrams, we intend
it to be replaced with the gadget in the left half of Figure 1.

To understand the purpose of this gadget, imagine that
rf and rd are both 0. If this is the case, then we have the
following two properties. Let a be the action from s to s′.

• If σ is a policy with σ(s) = a, then we have Valσ(s) =
Valσ(t).

• If σ is a policy with σ(s) 6= a, and if Valσ(t) = Valσ(s)+
b, for some constant b, then we have Appealσ(a) = p·b.

The first property states that the appeal reduction gadget
acts like a normal action from s to t when it is used by a pol-
icy. However, the second property states that, if the action
is not used, then the appeal of moving from s to t is reduced
by the probability p. In short, an appeal reduction gadget
can be used to make certain actions seem less appealing.
Since Dantzig’s rule always switches the action with highest
appeal, this will allow us to control which action is switched.
The rewards rf and rd give us further control on precisely
how appealing the action is, and how rewarding the action
is when it is used by a policy.

Circuit iteration problems.
The starting point for our PSPACE-hardness reductions will

be a pair of circuit iteration problems. A circuit iteration
instance is a triple (F,B, z), where F : {0, 1}n → {0, 1}n is
a function represented as a boolean circuit C, B ∈ {0, 1}n is
an initial bit-string, and z is an integer such that 1 ≤ z ≤ n.
We use standard notation for function iteration: given a
bit-string B ∈ {0, 1}n, we recursively define F 1(B) = F (B),
and F i(B) = F (F i−1(B)) for all i > 1. We define two
different circuit iteration problems, which correspond to the
two different theorems that we prove for Dantzig’s rule. The
problems are:

• BitSwitch(F,B, z): if the z-th bit of B is 1, then
decide whether there exists an even i ≤ 2n such that
the z-th bit of F i(B) is 0.

• CircuitValue(F,B, z): decide whether the z-th bit

of F 2n(B) is 0.

The requirement for i to be even in BitSwitch is a technical
requirement that is necessary in order to make our reduction
work. The fact that both of these problems are PSPACE-
complete should not be too surprising, because we can use
the circuit F to simulate a single step of a space-bounded
Turing machine, so iterating F simulates a run of a space-
bounded Turing machine.

In order to make our reduction work, we must make sev-
eral assumptions about the format of the circuit C, all of

which can be made without loss of generality. Firstly, we
assume that the circuit only contains Not gates and Or
gates. Secondly, we make an assumption about gate depths.
For each gate i, we use d(i) to denote the depth of the gate,
which is the length of the longest path from i to an input bit.
We assume that, for every Or gate, both inputs of the gate
have the same depth. Finally, we assume that the circuits
are presented in negated form, which means that all of the
output bits are negated. That is, the z-th output bit will
produce a 1 if and only if F (B) is 0. We also make several
further technical assumptions about the precise format of
the circuit, which are explained in detail in the full paper,
but which are not necessary for a high-level understanding
of how the construction works.

3. THE CONSTRUCTION
Our main result is that BitSwitch and CircuitValue

can be reduced to ActionSwitch and DantzigMdpSol,
respectively. Both reductions use the same construction,
but the reduction from CircuitValue to DantzigMdpSol
uses one extra gadget that we will describe at the end. Let
(F,B, z) be a circuit iteration instance, and let C be the
circuit that implements F . In this section, we give a high-
level overview of how our construction converts (F,B, z) into
an MDP. A complete formal definition of our construction
is available in the full version of the paper.

The construction is driven by a clock, which consists of a
modified version of the exponential-time examples of Meleko-
poglou and Condon [17]. The clock has two output states
c0 and c1, and the difference in value between these two
states is what drives our construction. In particular, the
clock alternates between two output phases: in phase 0
we have Valσ(c1) � Valσ(c0), while in phase 1 we have
Valσ(c0)� Valσ(c1). The clock alternates between phase 0
and phase 1, and goes through exactly 2n phases in total.

The construction also contains two full copies of the cir-
cuit C, which we will call circuit 0 and circuit 1. At the
start of the computation, circuit 0 will hold the initial bit-
string B in its input bits. During phase 0, circuit 0 will
compute F (B), and circuit 1 will copy F (B) into its input
bits. The clock then moves to phase 1, which causes circuit
1 to compute F (F (B)), and circuit 0 to copy F (F (B)) into
its input bits. This pattern is then repeated until 2n phases
have been encountered, and so when the clock terminates
we will have computed F 2n(B).

Each copy of the circuit is built from gadgets. We design
gadgets to model the input bits, Or gates, and Not gates.
In particular, for each gate i in the circuit, and for each
j ∈ {0, 1}, there is a state oji , which represents the output
of the gate i in copy j of the circuit. The value of this state
will indicate whether the gate is true or false. We use a
family of constants Hk, Lk, and bk, which have the following
properties: for each k we have Hk > Lk, Hk = Lk + bk, and
Hk = Lk+1. The idea is that Hk and Lk give high and low
values, which will be used by gates of depth k to indicate
whether they are true or false. More precisely, the truth
values in circuit j will be given relative to the value of the
clock state cj . Given a policy σ, we say that:

• Gate i is false in σ in phase j if Valσ(oji ) = Valσ(cj) +
Ld(i).

• Gate i is true in σ in phase j if Valσ(oji ) = Valσ(cj) +
Hd(i).
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Figure 1: Left: The appeal reduction gadget with rewards rf and rd, and probability p. Right: our shorthand for the appeal
reduction gadget.

Throughout this high-level description, we will use “gate
i outputs x” as a shorthand for saying that Valσ(oji ) =
Valσ(cj) + x.

We now describe the gadgets used in the construction.
Throughout our exposition, we will only describe the parts
of the construction that are necessary for understanding the
high-level picture. In particular, we will not define the prob-
abilities used in the appeal reduction gadgets, because know-
ing the precise probabilities is not necessary for understand-
ing the construction.

The clock.
Figure 2 shows the clock. We have used special notation

to simplify this diagram. The circle states have a single out-
going action a. Each circle state has two outgoing arrows,
which both have probability 0.5 of being taken when a is
used. The clock is an adaptation of the exponential-time
lower bound of Melekopoglou and Condon [17], but with
several modifications. Most importantly, while they consid-
ered minimising the reachability probability of state 0, we
consider maximizing the expected total reward.

Note that the two states c0 and c1 are the two clock states
that we described earlier. In the initial policy for the clock,
all states select the action going right. In the optimal policy,
all states select the action going right, except state 1, which
selects its downward action. However, to move from the
initial to final policy, Dantzig’s rule makes an exponential
number of switches. In each step, the probability of reaching
si′ increases. The large payoff of T · 2n+1, where T is a
large positive constant, ensures that the difference in value
between c0 and c1 is always T .

Or gates.
Figure 3a shows the gadget that will be used for each Or

gate i in circuit j ∈ {0, 1}, where I1(i) and I2(i) are the two
inputs for gate i. As the circuit is computing in phase j we
will have that xji takes the action towards cj . The behaviour
of this gadget is comparatively straightforward. If one of the
two input gates outputs a high signal, then the state vji will
switch to the corresponding output state, and the output of
gate i will be Hd(i)−1 + bd(i) = Hd(i). On the other hand,

if both input gates output a low signal, then oji will switch

to xji , so in this case the gate outputs Ld(i), which is the
correct output for this case.

Not gates.
Figure 3b shows the gadget that will be used to represent

a Not gate i in circuit j ∈ {0, 1}, where I(i) is the input to
the gate. The state aji is used to activate the gadget. At

the start of clock phase j, we have that aji takes the action
towards cj . The probability p1 will be carefully chosen to

ensure that aji can only switch to c1−j after the output of all
gates with depth strictly less than i has been computed. The
gate activates when aji switches to c1−j . While the gadget

is not activated, the state oji will use the action towards

ojI(i). Once the gadget has been activated, there are then

two possible outcomes, depending on whether the input bit
is low or high.

• If the input bit is low, then the appeal of switching
oji to aji is large. So, oji will be switched to aji , and

the rewards on the action from oji to aji and on the

action from aji to c1−j ensure that the gate outputs
Hd(i)−1 + bd(i) = Hd(i), which is the correct output for
this case.

• If the input bit is high, then the appeal of switching
oji to aji is smaller, because the state ojI(i) has a higher

value. In fact, we ensure that the appeal is so small
that the action from oji to aji will never be switched,
because its appeal is smaller than the appeal of the
action that advances the clock to the next phase. So, oji
never switches away from ojI(i), and therefore the gate

will outputHd(i)−1 = Ld(i), which is the correct output
for this case. Here we can see why the relationship
between Hd(i)−1 and Ld(i) is needed in order for our
reduction to work.

Input bits.
Figure 4 shows the gadget that we will use for every in-

put bit i and every j ∈ {0, 1}, where I(i) gives the output
bit that corresponds to input bit i. Since the input bits lie
at the interface between the two circuits, they are the most
complicated part of the construction. The input bit gadget
has two distinct modes. During phase j, when circuit j is
computing, the input bits in circuit j are in output mode,
which means that they output the values that they are stor-
ing. During phase 1− j, when circuit j is copying, the input
bits in circuit j are in copy mode, which means that they
must copy the output of gate I(i) from circuit 1− j.

We start by describing the output mode. In this mode,
states lji and rji both take the action towards cj . The output

is determined by the action chosen by state oji : if the action

to lji is chosen, then the gadget outputs the high signal H0,

and if the action to rji is chosen, then the gadget outputs
the low signal L0.

When the gadget is in copy mode, the state lji takes the

action towards c1−j and the state rji takes the action towards

o1−jI(i) . In this mode, the state oji initially takes the action

towards lji . If at any point the gate I(i) outputs a high

signal, then oji switches to rji , if I(i) only ever outputs a low
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Figure 2: The clock construction.
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Figure 3: Left: The gadget for an Or gate i in circuit j. Right: A gadget for a Not gate i in circuit j.

signal, then oji does not switch away from lji . Hence, when
the gadget moves back into output mode, it will output a
high signal if and only if I(i) gave a low signal in the previous
phase. Since we require that the circuit is given in negated
form, this is the correct behaviour.

The most complicated part of the construction is ensur-
ing that the input bits switch modes correctly at the end of
each clock phase. This is difficult because we must ensure
that the data held by the states oji is not lost, and because
this operation happens simultaneously in both circuits. Ul-
timately, we show that there are probabilities p3 through p7
that ensure that the mode transitions occur correctly.

ActionSwitch is PSPACE-complete.
We have now completed the high-level description of all

of the gadgets in the construction. Suppose that we are
given an instance BitSwitch(F,B, z). We define an initial
policy σinit such that the input bits in circuit 0 output the
bit-string B. The state o0z is the output state of the input-
bit gadget corresponding to the z-th input bit. When we
execute Dantzig’s rule starting from σinit, we have that the
state o0z switches to r0z if and only if there exists an even
i ≤ 2n such that the z-th bit of F i(B) is 1. So, we have a
reduction from BitSwitch to ActionSwitch, which proves
that ActionSwitch is PSPACE-complete.

DantzigMdpSol is PSPACE-complete.
To show that DantzigMdpSol is PSPACE-complete, we

use one additional gadget, which is shown in Figure 5. Sup-
pose that we have an instance CircuitValue(F,B, z). We
create the MDP as before, but the additional gadget in-
terfaces with the states l0z and r0z from the z-th input bit
gadget. The purpose of this gadget is to make sure that the
z-th output bit computed in phase 2n is not destroyed by
any subsequent switching.

In the initial policy, the state b2 uses the action that goes
directly to the state si from the clock. In this configura-
tion, b2 has value 0, so the states l0z and r0z will not switch
to b2. Therefore, the behaviour of policy iteration will be
unchanged, and Dantzig’s rule will compute F 2n(B).

The appeal reduction gadget between b2 and b1 is config-
ured so that b2 switches to b1 immediately after the 2n-th
clock phase. Once this has occurred, the state b2 will have
value 2 ·W , where the payoff W is chosen to be extremely
large, so both l0z and r0z will switch to b2. After both states
have switched, the state o0z will be indifferent between its
two successors, so it can never be switched. Thus, when
policy iteration terminates with an optimal policy, the ac-
tion chosen by o0z will be determined by the z-th bit of
F 2n(B), which completes the reduction from CircuitValue
to DantzigMdpSol.

4. CONCLUSION
There are several research directions that arise from this

work. Firstly, and most obviously, is to extend the PSPACE-
completeness results to other pivot rules. A first step here
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might be to consider Bland’s rule, which assigns an index to
each variable, and always pivots the variable with negative
reduced cost that has the least index. It is possible that our
construction might be applied in a rather direct way to show
results for Bland’s rule, since our construction essentially
relies on controlling the order in which actions are switched
in the MDP.

Providing results for other pivot rules will probably be
more challenging, and require different constructions. The
steepest edge pivot rule is the one that is most commonly
used in practice, so proving PSPACE-completeness results for
this rule might be the next logical step. It is not even known
if the steepest edge switching policy can take exponential
time for MDPs. There are also other rules, such as the one
that in each step gives the biggest overall improvement in
the objective function, where PSPACE-completeness results
would be interesting.

Moving away from linear programming, our results in-
dicate that we may be able to show PSPACE-completeness
results for a wide variety of different algorithms. As men-
tioned in the introduction, this type of result was only pre-
viously known to hold for algorithms that solve PPAD-hard
or PLS-hard problems, but our results indicates that this
phenomenon may be more widespread. In particular, par-
ity games, mean-payoff games, and discounted games are
three problems that lie at the intersection of PPAD and PLS,
but which are not known to lie in P. Strategy improve-
ment algorithms, which are a generalisation of policy iter-
ation, are used to solve these games, and these algorithms
are an obvious target. Note that our results already hold
for strategy improvement algorithms that solve stochastic
mean-payoff games, because these games are a superset of

average-reward MDPs. It seems likely that this can be used
directly to show results for stochastic discounted games, and
simple stochastic games, using reductions similar to the ones
used by Friedmann in the non-stochastic setting [9].

Another target might be Lemke’s algorithm for solving
linear complementarity problems (LCPs). For the special
case of P-matrix LCPs, the problem of finding a solution is
known to lie at the intersection of PPAD and PLS, but not
known to lie in P. At first glance, such results may not
seem possible for P-matrix LCPs, because these problems
are known to always have a unique solution. However, there
is some leeway for a result here, because the solution can
lie at the boundary between multiple convex cones, and the
algorithm will only return one of these cones as a solution.

Ultimately, the end goal of this line of research is to pro-
duce a “recipe” for PSPACE-hardness than can be applied
to a wide variety of simplex pivoting rules. For example,
Adler, Papadimitriou, and Rubintstein ask whether such a
result holds for all pivoting rules that use only primal feasible
bases [2]. Any such recipe would shed light on the require-
ments for a strongly polynomial-time pivot rule. While we
believe our work has made an important first step, it is clear
that much further research will be necessary to achieve this
goal.
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