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Abstract. We extend a result of Klee and Minty by showing that the Simplex Algorithm with the
pivot rule of maximizing criterion iniprovement is not a good algorithm in the sense of Edmonds.
The method of proof extends to other similar pivot rules.

0. Introduction

In their landmark contribution to the theory of maximization ovar
polyhedra [6], V. Klee and G.J. Minty show that it is possible for the
Simplex Algorithm of Dantzig [1] to require in the order of nld/2]
pivots before optimization occurs in a lirear program with (n—d) linear
equality constraints in # non-negative variables, if the most commonly
used pivot rule is employed (see [ip.t

Their result naturally leads to the question: can one do better (i.e.,
lessen the numbzr of pivots) if other pivot rules are used? In their con-
cluding paragraphs, Klee and Minty write: *“ ... our methods could prob-
ably be used exhibit the same bad behavior for many other pivot rules.
Indeed, we do not believe there exists a pivot rule that turns the simplex
method into a ‘good algorithm’ in the sense of Edmonds, though the
rule calling at each stage for the greatest possibie improvement ... of
the objective function would seem to merit further study ...”.

Here we wish to write a postscript to [6] which confirms the opin-

* QOriginal version reczived 7 July 1971.

1 As Klee and Minty note in [6], Gale (How to solve linear inequalities, Am. Math. Monthly 76
(1969) 589599 ha« regarded the determination of the computational complexity of linear
programming as a task which *“‘has stood as a challenge to workers in the field for twenty years
now and remains, it ray opinion, the principal opea guestion in the theory of linear computa-
tion.”
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ions of Klee and Minty; using their techniques, we shall derive the iden-
tical result for the rule they mention as meriting further study. In fact,
it will be evident, after our discussion, that, for any fixed integer k, the
following rule can be made to advance up the poiyhedra with the same
order of slowness as the usual pivot rule: as next pivot one chooses the
first element in an optimai k-sequence, where the latter nomenclature
denoies a sequence of k pivots which increases the criterion value at
least as much as any other sequence of k pivots.

No doubt the reason why Klee and Minty suggest an investigation of
the rule which calls for the greatest increase in the criterion function,
is because their constructions in [6] do not exhibit programs which
behave tadly under this rule. In fact, if this rule is used on the hyper-
cube constructed in their proof that H(d + 1, n + 2) > 2H(d, n) + 1, the
optimum is reached in one pivot step, although 29 —1 pivot steps are
required if the usual rule in [1] is used.? Similarly, their second and
major construction in [6] yields polyhedra in which the optimum is
reached in k steps {(uniformly in P), if this new rule is used. The main
devices that force the Simpiex Algorithm with the usual rule to pursue
an excessively long tour of vertices are given in [6] : essentially, the
usual rule is sensitive not only to the polyhedion dzscribed by the linear
program, but also to the representation (in terms of inejualities) for
the facets of the polyhedron, and by adjusting the representation, one
can “fool” the usual pivot rule. However, the rule of maximizing crite-
rion improvement, which we now proceed to vxamine, is independent
of representation and is an intrinsic of the polyhedron (as imbedded in
Euclidean space).

We follow the very cautious and conservative approach of [6] by
admitiing that we do not know the significanc: of our resuits for practi-
cal linear programming computation. After all, experience with the
Simplex Algorithm is very good, so the polytones we construct below
do not occur in the applications (to date); but why not?

2 The reader shou!d consult [6] for any unexplained no:ation or terminology. A polytope is of
class (d, n) if it is d-dimensional and has precisely n facets. It is simple if each of its vertices is
incident to precisely d facets, and it is d-dimensional, Simoie polytopes correspond to non-
degenerate linear programming problems. H(d\, n) is the maximum number of pivots which
can be encountered in a linear program deriving from a siraple (d, n)-polytope, where any cri-
terion-increasing pivot may be chosen.
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1. The main construction

Let a (d, n) simple polytope P be given (our notation is from [6]).
We shall assumne that P is reversible of length t, by which we mean that
the following conditicns hold for P: There exists two veriices p, p* of
P and a linear functional ¢ such that:

(i) when the Simplex Algorithm with the pivot rule of maximizing
criterion improvement starts at p with ¢ as criterion function, it defines
a unique path, p = pg, py, ..., p, = p* of adjacent vertices ending at p*
such that

o) < d(py) < ... < ¢(p,);

(ii) when the Simplex Algorithm with the same pivot rule starts at p*
with —¢ as criterion function, we obtain a unique path p*=gq,, q;. ...
q, = p ending at p of the same length with

—¢(qy) < —¢d(q;) < ... < —d(g,).

(A polytope P may have several lengths.)

For this given polytope P, we shall construct a polytope V' C R2, and
then, following a perturbation of ¥ X, P to a polyiope Q € R9*2 which
is combinatorially equivalent to V' X P, show ‘nat Q is a reversible poly-
tope of type (d+2, n+4k+3) and of lengtb at least 2kt + 4k, where
k is the number of facets in V.3 Since we shall be able to obtain such
a V for any given k, this will prove that

(1) M@+2,n+4dk+3)> 2kM(d, n) + 4k,

whers M(d, n) is the maximum of the lengths of reversible polytopes
of type (d, m) with i < n. Assuming (1), we can prove the follcwing
result {(which is our main result) exactly as Klee and Minty use their in-
equality H(d+ 2, n+k+ 1) > kH(d, n) + k—1 to obtain their main re-
sults in [6].

Theorem 1. lim, inf M (<, n)/nl9/2) > 1/614/21"  whenever d > 2,

3 Since P is simple and ¥ is also, " X P, and hence its combinatorial equivalent Q, is simple.
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and hence there is a constant ¥z > 0 such ihat
Md.n) >y, 192, d>2
Proof (assuming (1)). The p.toof is by induction on d. It is evident that
M(2,n)>n-4

and an easy geometrical construction (which we leave to the reader)
establishes

M@3,n)2zn,

so that the “ground cases” d = 2 and d = 3 pose no difficulty.
We establish the result for d + 2 by using the result for d and the
following inequalities:

M(d+2,n) . M@+2.5n+3)
liminf —————— = [iminf
n—+w  p[(d+2)/2] n=+e (5p+3)ld/2]+1

2nM(d, n)+4n
i (6n)(61)14/2]

v

1 M(d, n)
-—-— liminf kaGal

1
23 [1df2] dj2]
Gl n-r+w pld/2]

i 1

2 6ld/2141  gld/2)?

s> 1 1
T eUd21+1)? T gl

In the remainder of this s-ction, we shall be working toward obtaining
(nH.

As in [6], the main difficaity to overcome is to insure that the de-
formed polytope Q is combinatoriaily equivalent to V' X P. It is generally
false that a small perturbation of a polyhedron does nct change its com-



§ 1. The main consiruction 371

binatorial type; visualize, for instance, a cube in three limensions, in
which two diagonally opposite points on the top face are “pushed down,”
so that the top face becomes two faces. The cross-product construction
is useful precisely because it allows us to obtain many vertices with only
few facets in the polytope (so that long vertex paths can cxist), since

the cross-product of a (d. n) and a (c, m) polytope is a {d+c, m+n) poly-
tope, so that the facets add, while the vertices multiply. If the deformed
polytope Q has many more faces than V X P, we cannot obtain Theo-
rem 1.

In [6], Klee and Minty required only a very small deformation of the
cross product. In small deformations, the extreme points of a polytope
are unchanged. Using this fact, and the following lemma they developed,
they were able to show that the combinatorial type of the polytope they
constructed was that of the cross product.

Lemma 2 (see [6]). Let X and Y be polyt.pes having the same number
m cf vertices, the vertices of X being x,, ..., X,, and those of Y being
Y1+ .es Yim - Suppose that for each index set 1 C {1,2,...,m} , whenever
the convex hull of {x;|i € I'} is a facet of X, then the convex hull of
{v;li€ I} is a facet of Y. Then X and Y are combinatc «lly equivalent.

In the construction below, we shall make use of the observation that,
even if one does deform the cross product polytope quite substantially,
as long as one does it in the manner of Klee and Minty, involving cer-
tain considerations of parallelism (we shall be explicit below), then the
vertices of the perturbed polytope do correspond to those of the cros.
product, so that Lemma 2 can be applied exactly in the way that Klee
and Minty apply it to obtain ccmbinatorial equivalence of the perturbed
polytope with the cross product. We shall need to employ substantial,
rather than small, deformations, to obtain the polytope Q; and the ideas
of large deformations and the construction of a V that depends on P are
really the only new devices we bring to the subject matter.

With P given and as described, let us now begin the construction of the
polytope ¥V C R2. We will simultaneously define two sequences of points
V0> Uiy Ugps Uggery» Vaka BNA Wo, Wi, oo, Wage, Wagars Waksa s the
former points will be the vertices of V, all points w; will be interior to
V, ar.d the condition will be met that
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Uy, is parallel tow;wy,, i=0,...,4k+1.

The reader may wish to follow our construction with paper and pencil,
since we shall refer to geometrical aspects of it.

We chose as v; the point (0, 1). Letting a denote the linear functional
of x € R2 which gives the first co-ordinate, we chose w; on the line
y = 1so that a(w;) = a(v;) + 1 (and hence w, = (t,1)). We shall as-
sume, without loss of generality, that ¢(P) = [0, !], so that ¢(p;) =0
and ¢(p,) = 1. In the following, let A > 0 be the minimum of the posit-
ive numbers ¢(p;,; ) —o(p;) and ¢7q;) —Plq;,, ) fori=1, ..., ¢-1.

To every point p € P, we are going to assign the point

p' = ((1 =¢p)v, + ¢(p)wW,, p)

in a deformation Q of the Cartesian product ¥ X P. We wish to arrange
it so, that, if p(‘) (=(po)1 ) is the initial solution of the linear program
over the polytope Q with a as criterion function, the Simplex Algorithm,
under the pivot rule ¢f maximizing criterion improvement, will proceed
up through the points p}, z1...., p}. To do so, we wish to make no
points of Q adjacent to pé ““less attractive” under this pivot rule than
(v5. py) and (vy, pgy). It wil. be possible to arrange things so that the
points adjacent to p(‘; are (v, pg) and (vy, po) {where we are about to
choose both v, and v,), and the points p!, where p is adjacent to p,

in P. To make all these latter points “more attractive’ than the two
former points mentioned, it will suaffice to take v, and v, so that we
have both a(v;) —a(v;) < X and a(vy) —a(v;) < X. We further restrict
v, so that the line v, v, has positive slope and restrict v, so that the
line v, vy has negative slope.

Let us assume that these restrictions have been met and we have
chosen vy and v, . Then we choose the points w; so that v;w; is paral-
lel to v, w; and so that a(w;) = a(»;)+ 1 fori=0,2. Foreachp € P
and i = 0, 2, we associate the point

P = @@w; + (1 -¢(p)v;. p)

of Q. This same relation shail also be used in the further when the other
points v, ... Ugr 4y and wy, ..., Wy, , have been defined, to define points
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pl forp€ Pandi=3,...,4k+2;Q is then defined as the convex hull
of the points p' € R9*2,

Taking for granted that the points pi are (as we shall show later) ver-
tices of Q, by our choices of vy, vy, Wy, Wy, it is clear that the Simplex
Algorithm will proceed through the vartices p(l), ptl as desired. How-
ever, when ptl isreached, no further improvement can be obtained by mov-
ing through the P component (i.e., the last d co-ordinates) of 0, so a
change in the ¥ component (i.e., the first two co-ordinates) is needed
for improvement. Thus the points then considered by the algorithm
are p and p? ; we want it to proceed to p?, and to do so we need only
that

t

a(vg)—a(v)) < a(v,y) —a(vy),

which we can certainly assume, withouf any loss of generality.

Once at the point pt2 , all points p? represent no increase in the
criterion value, as must be, since v, w,; w, v, is a parallelogram. It there-
fore again pays only to move through the ¥ component. Now let us
choose v; so that v,v, has positive slope, but slope less than that of
v U, ; this will insure that v; is an extreme point of V, once v3v, is
chosen also to have positive slope, but slope less than that of v,v5.
Fixing some slope meeting these requirements for the line vyv5, we
have freedom as to where exactly we shall place v; on that line. Ex-
tend through the point w, aline L parallel to the line which is to be
U, V3, and draw any point w; on L strictly to the right of w,. Then v,
is chosen on v,v; so as to insure that a(v;) —a(w;) = 1. Note that
v, Wyw3 U3 is a trapezoid (usually not isesceles).

Returning to the behavior of the algorithm, we see that, when it is
pivoting at pt2 , the adjacent point pt3 will be chosen, since, it is the only
adjacent point with criterion improvement. We now war:t the algorithm
to proceed to take the long route p? = g3, ¢3, 43, ....a” = p}. To do so,
we have to make all alternatives at pt3 worse than the adjacent point
qi. This is easily done by choosing v, so that the slope vyv,, while
positive, is less than that of v,v;, choosing w, so that v;wyw,v, isa
parallelogram, and insuring that a(v; ) —a(v;) < A

When the point pg = qt3 is reached by the algorithm, the only adjacent
point offering improvement is p‘('). Once at pg, improvement can again
be obtained only by moving through the ¥ component of Q. We choose
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a line M of positive slope 'oss than that of v3v, passing through v,,

and put vs on this line any place to the right of v,. Then ws is choosen
so that w,u,Usw; is a trapczoid with parallel sides v v5 and wyws,
and so that a(ws)—a(vs) = 1.

Now the pattern repeats, us it does every four vertices; v is treated
like v, ;vg and wy are defined so that vgwswgvg is a paralielogram and
a(vg)—a(vs) < A:w; and v, are defined so that ugwgw, v, is a tra-
zoid and a(v;) —a(w;) = 1;vg and wg are defined so that v; w; wgug
is a parallelogram and a(vg j)—a(v;) < A; etc. The pattern ends with the
construction of the points v, and wy, (where k could have been chosen
arbitrarily). Then the point vy, is chosen so that vy, liesony =1
and has a(Vyy, ;) > a(Vgr); Wy, is chosen so that a(Vgg 4 ) —a(Wyp )=
1. Finally, the point vy ., is chosen so that vyv,, 5 is parallel to the
x-axis and Vgy, yV44 4, has (say) the same slope as vy v, but with ne-
gative sign, and wy; , , is chosen so that a(Ugy 49) ~a(W4p4p) = 1.

Now, provided that we have indeed insured that Q is combinatorially
equivalent to V' X P and that the ad;acent vertices are as we described
them, it is clear that in traversing every four vertices of Q the algorithm
takes 2¢ + 4 pivots, so that at least 2kt + 4k are required in all. Further-
more, an investigation of the behavior of the algorithm for criterion
funciion when started at initial solution p$**? (assuming the facts on
vertices and adjacency are correct) will reveal the same number of pivots
so long as we have chosen vy, 0 that a(Uy . ) —a(vs,) > 1, say
(which can always be done), so that @ is a ‘eversible polytope of length
2kt -+ 4k, justifying our inequality M(d + 2, n+ 4k + 3) > 2kM(d, n) + 4k
and thereby Theorem 1.

What remains is to prove that p’ fori = (..., 4k + 2, p an extreme
point of P, are precisely the vertices of their convex hull, and then use
this fact combined with Lemnma Z to give the combinatorial equivalence.
The adjacency relations will automatically be satisfied because the corre-
spondence between vertices of Q cnd 7 X /’ which we now assert is that
P! correspond to (v, p), and hence the adjscency relations in Q can be
easily read off from those in ¥ X -, which is readily seen to satisfy our
assertions in this regard.

If our claim regarding the verti:es of Q is false, then there is an ex-

treme point p of P and an i for which a cor:.vex combination of the fol-
lowing form holds:
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4k+2
p'= 2o M p’ + Z:,) {N;Iq"] q anextreme point of P, ¢ #p},
J#EI j=
4lg+2 .
1= 2 7\; + 424 {7\’ { ¢ an extreme point of P, ¢ # p},

J#i j=0

where N 2> 0. Since p € P is an extreme point of P, the fact that the
last @ components of points ¢/ are g € P, shows that Nq =0 for all
¢ # pr and all j. Thus, we now have that (taking first two co-ordinates)

(1-d(p)) v + d(pIw; = 22 N (1-6(p)) v + () w;.
J#I P / /

To refute this conclusion, thus establishing the claim, we need only
show that for each p € P the points (1 qb(p))v +¢(p)u which we
shall call /p, are precisely tie vertices of their convex hull in R2.

We proceed to this latter 1ssue as follows. Since v, v, is parallel to
Wiw,, and the proportion of v, Iptov W, s the same as the propor-
tion o1'v, 2p to v,w, (and is, namely, ¢(p)), we see that 1p 2p is paral-
lel to v, v,. Similarly, 2p 3p is parallel to v,v;, 3p 4p parallel to v;v,,
etc. Thus the slopes of all lines ip i*1p are equal to the corresponding
slopes of lines v;v;, . For the very same reason that our choices of
slopes in the lines v;v;,; made the points v; the extreme points of their
cenvex hull, the points /p will also be the extreme points of their con-
vex hull. We conclude that the points p/ are indeed the extreme points
of Q.

With the correspondence of pi to (v;. p) between the extreme points
of @ and V X P, respectively, we show that the hypotheses of the Lem-
ma 1 are satisfied precisely as Klee and Minty do in [6] for the polytope
they construct in their proof that H(d+2,n+&+ 1) > kH(d. n)+ k-1.
Essentially, the very same functionals defining the faces of Q and V X P,
respectively, can be employed. This proves Theorem 1.

2. Concluding comments

In our construction, the pivot rule which calls for examining the next
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(say) two possible pivots, and choos.ng as the best pivot the one which
begins the best sequence of two pivo's, weuld have proceeded to the
optimum in Q in only 3 pivots, inder endent of P. But this pivot rule
can also be made to slow up, by the following devices. Instead of just
one point v, to the right and down from F a miniscule distance, two
extreme points are to be put to the right and down from P a negligible
distance. Th . one makes

a(vy)—a(v;) < A, aiv3)~a(vy) < A,
but a(vy) -- a(v3) > 2; and then
a(vs)—a(vy) <\ a(vg) -e(vg)< A

Hence, when started at p(‘), the best possible gain in two pivots is to
go p} and p) so the first pivot would be p}. By an analysis similar to
the one in Section 1, it can easily be shown that the beginning of the
path chosen by the pivot rule under discussion will be

S B 3 4_ 43 4 4 _ .4 .5 &
py. py. v ..pl. pt P, p! =q5. 47 4 =P PG g

znd that this pattern repeats every 6 vertices of V, which is to be
chosen fo have 6k + 4 vertices.

The construction would be similar for a pivot rule which proceeds
oy examining the sequences of all possible next r pivots for fixed 7;
by insuring that the next r extreme points of V give bad improvement
compared to moving through P, one forces the algorithm first up and
then down P, the cycle reneating every 2(r+1) points. Thus one obtains
inequalities similar to Theorem 1 in which the constant may be less than
L, but the order of magnitude of the number of pivots, namely n{9/2] |
does not change.

It seems that any algoiithm which proceeds in a purely local manner
across a polytope will suffer from the same deficiencies as the pivot rule
we have examined. But what of algorithms which simultaneously ex-
plore different local regions of the polytope, seeking to combine the
local knowledge into a global estimate of the shape of the polytope?
This question, while interesting, appears to be purely academic, because
the Simplex Algorithm works well in practice.
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