169 research outputs found

    A Knowledge Graph Based Approach to Social Science Surveys

    Get PDF
    Recent success of knowledge graphs has spurred interest in applying them in open science, such as on intelligent survey systems for scientists. However, efforts to understand the quality of candidate survey questions provided by these methods have been limited. Indeed, existing methods do not consider the type of on-the-fly content planning that is possible for face-to-face surveys and hence do not guarantee that selection of subsequent questions is based on response to previous questions in a survey. To address this limitation, we propose a dynamic and informative solution for an intelligent survey system that is based on knowledge graphs. To illustrate our proposal, we look into social science surveys, focusing on ordering the questions of a questionnaire component by their level of acceptance, along with conditional triggers that further customise participants' experience. Our main findings are: (i) evaluation of the proposed approach shows that the dynamic component can be beneficial in terms of lowering the number of questions asked per variable, thus allowing more informative data to be collected in a survey of equivalent length; and (ii) a primary advantage of the proposed approach is that it enables grouping of participants according to their responses, so that participants are not only served appropriate follow-up questions, but their responses to these questions may be analysed in the context of some initial categorisation. We believe that the proposed approach can easily be applied to other social science surveys based on grouping definitions in their contexts. The knowledge-graph-based intelligent survey approach proposed in our work allows online questionnaires to approach face-to-face interaction in their level of informativity and responsiveness, as well as duplicating certain advantages of interview-based data collection

    Abstract syntax as interlingua: Scaling up the grammatical framework from controlled languages to robust pipelines

    Get PDF
    Syntax is an interlingual representation used in compilers. Grammatical Framework (GF) applies the abstract syntax idea to natural languages. The development of GF started in 1998, first as a tool for controlled language implementations, where it has gained an established position in both academic and commercial projects. GF provides grammar resources for over 40 languages, enabling accurate generation and translation, as well as grammar engineering tools and components for mobile and Web applications. On the research side, the focus in the last ten years has been on scaling up GF to wide-coverage language processing. The concept of abstract syntax offers a unified view on many other approaches: Universal Dependencies, WordNets, FrameNets, Construction Grammars, and Abstract Meaning Representations. This makes it possible for GF to utilize data from the other approaches and to build robust pipelines. In return, GF can contribute to data-driven approaches by methods to transfer resources from one language to others, to augment data by rule-based generation, to check the consistency of hand-annotated corpora, and to pipe analyses into high-precision semantic back ends. This article gives an overview of the use of abstract syntax as interlingua through both established and emerging NLP applications involving GF

    Proceedings

    Get PDF
    Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories. Editors: Markus Dickinson, Kaili Müürisep and Marco Passarotti. NEALT Proceedings Series, Vol. 9 (2010), 268 pages. © 2010 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/15891

    Ontology Learning Using Formal Concept Analysis and WordNet

    Full text link
    Manual ontology construction takes time, resources, and domain specialists. Supporting a component of this process for automation or semi-automation would be good. This project and dissertation provide a Formal Concept Analysis and WordNet framework for learning concept hierarchies from free texts. The process has steps. First, the document is Part-Of-Speech labeled, then parsed to produce sentence parse trees. Verb/noun dependencies are derived from parse trees next. After lemmatizing, pruning, and filtering the word pairings, the formal context is created. The formal context may contain some erroneous and uninteresting pairs because the parser output may be erroneous, not all derived pairs are interesting, and it may be large due to constructing it from a large free text corpus. Deriving lattice from the formal context may take longer, depending on the size and complexity of the data. Thus, decreasing formal context may eliminate erroneous and uninteresting pairs and speed up idea lattice derivation. WordNet-based and Frequency-based approaches are tested. Finally, we compute formal idea lattice and create a classical concept hierarchy. The reduced concept lattice is compared to the original to evaluate the outcomes. Despite several system constraints and component discrepancies that may prevent logical conclusion, the following data imply idea hierarchies in this project and dissertation are promising. First, the reduced idea lattice and original concept have commonalities. Second, alternative language or statistical methods can reduce formal context size. Finally, WordNet-based and Frequency-based approaches reduce formal context differently, and the order of applying them is examined to reduce context efficiently

    Ontology Enrichment from Free-text Clinical Documents: A Comparison of Alternative Approaches

    Get PDF
    While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships, as well as difficulty in updating the ontology as domain knowledge changes. Methodologies developed in the fields of Natural Language Processing (NLP), Information Extraction (IE), Information Retrieval (IR), and Machine Learning (ML) provide techniques for automating the enrichment of ontology from free-text documents. In this dissertation, I extended these methodologies into biomedical ontology development. First, I reviewed existing methodologies and systems developed in the fields of NLP, IR, and IE, and discussed how existing methods can benefit the development of biomedical ontologies. This previously unconducted review was published in the Journal of Biomedical Informatics. Second, I compared the effectiveness of three methods from two different approaches, the symbolic (the Hearst method) and the statistical (the Church and Lin methods), using clinical free-text documents. Third, I developed a methodological framework for Ontology Learning (OL) evaluation and comparison. This framework permits evaluation of the two types of OL approaches that include three OL methods. The significance of this work is as follows: 1) The results from the comparative study showed the potential of these methods for biomedical ontology enrichment. For the two targeted domains (NCIT and RadLex), the Hearst method revealed an average of 21% and 11% new concept acceptance rates, respectively. The Lin method produced a 74% acceptance rate for NCIT; the Church method, 53%. As a result of this study (published in the Journal of Methods of Information in Medicine), many suggested candidates have been incorporated into the NCIT; 2) The evaluation framework is flexible and general enough that it can analyze the performance of ontology enrichment methods for many domains, thus expediting the process of automation and minimizing the likelihood that key concepts and relationships would be missed as domain knowledge evolves

    Designing Service-Oriented Chatbot Systems Using a Construction Grammar-Driven Natural Language Generation System

    Get PDF
    Service oriented chatbot systems are used to inform users in a conversational manner about a particular service or product on a website. Our research shows that current systems are time consuming to build and not very accurate or satisfying to users. We find that natural language understanding and natural language generation methods are central to creating an e�fficient and useful system. In this thesis we investigate current and past methods in this research area and place particular emphasis on Construction Grammar and its computational implementation. Our research shows that users have strong emotive reactions to how these systems behave, so we also investigate the human computer interaction component. We present three systems (KIA, John and KIA2), and carry out extensive user tests on all of them, as well as comparative tests. KIA is built using existing methods, John is built with the user in mind and KIA2 is built using the construction grammar method. We found that the construction grammar approach performs well in service oriented chatbots systems, and that users preferred it over other systems

    Generic semantics-based task-oriented dialogue system framework for human-machine interaction in industrial scenarios

    Get PDF
    285 p.En Industria 5.0, los trabajadores y su bienestar son cruciales en el proceso de producción. En estecontexto, los sistemas de diálogo orientados a tareas permiten que los operarios deleguen las tareas mássencillas a los sistemas industriales mientras trabajan en otras más complejas. Además, la posibilidad deinteractuar de forma natural con estos sistemas reduce la carga cognitiva para usarlos y genera aceptaciónpor parte de los usuarios. Sin embargo, la mayoría de las soluciones existentes no permiten unacomunicación natural, y las técnicas actuales para obtener dichos sistemas necesitan grandes cantidadesde datos para ser entrenados, que son escasos en este tipo de escenarios. Esto provoca que los sistemas dediálogo orientados a tareas en el ámbito industrial sean muy específicos, lo que limita su capacidad de sermodificados o reutilizados en otros escenarios, tareas que están ligadas a un gran esfuerzo en términos detiempo y costes. Dados estos retos, en esta tesis se combinan Tecnologías de la Web Semántica contécnicas de Procesamiento del Lenguaje Natural para desarrollar KIDE4I, un sistema de diálogo orientadoa tareas semántico para entornos industriales que permite una comunicación natural entre humanos ysistemas industriales. Los módulos de KIDE4I están diseñados para ser genéricos para una sencillaadaptación a nuevos casos de uso. La ontología modular TODO es el núcleo de KIDE4I, y se encarga demodelar el dominio y el proceso de diálogo, además de almacenar las trazas generadas. KIDE4I se haimplementado y adaptado para su uso en cuatro casos de uso industriales, demostrando que el proceso deadaptación para ello no es complejo y se beneficia del uso de recursos
    corecore