5 research outputs found

    A Medical Analysis for Colorectal Lymphomas using 3D MRI Images and Deep Residual Boltzmann CNN Mechanism

    Get PDF
    In this technological world the healthcare is very crucial and difficult to spend time for the wellbeing. The lifestyle disease can transform in to the life threating disease and lead to critical stages. Colorectal lymphomas are the 3rd most malignancy death in the entire world. The estimation of the volume of lymphomas is often used by Magnetic Resonance Imaging during medical diagnosis, particularly in advanced stages. The research study can be classified in multiple stages. In the initial stages, an automated method is used to calculated the volume of the colorectal lymphomas using 3D MRI images. The process begins with feature extraction using Iterative Multilinear Component Analysis and Multiscale Phase level set segmentation based on CNN model. Then, a logical frustum model is utilized for 3D simulation of colon lymphoma for rendering the medical data. The next stages is focused on tackling the matter of segmentation and classification of abnormality and normality of lymph nodes. A semi supervised fuzzy logic algorithm for clustering is used for segmentation, whereas bee herd optimization algorithm with scale down for employed to intensify corresponding classifier rate of detection. Finally, classification is performed using Deep residual Boltzmann CNN. Our proposed methodology gives a better results and diagnosis prediction for lymphomas for an accuracy 97.7%, sensitivity 95.7% and specify as 95.8% which is superior than the traditional approach

    Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ ΠΏΡ€ΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°ΠΊΠ΅: ΠΎΠ±Π·ΠΎΡ€

    Get PDF
    The study objective: the study objective is to examine the use of artificial intelligence (AI) in the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) and discuss the future potential of AI in CRC. Material and Methods. The Web of Science, Scopus, PubMed, Medline, and eLIBRARY databases were used to search for the publications. A study on the application of Artificial Intelligence (AI) to the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) was discovered in more than 100 sources. In the review, data from 83 articles were incorporated. Results. The review article explores the use of artificial intelligence (AI) in medicine, specifically focusing on its applications in colorectal cancer (CRC). It discusses the stages of AI development for CRC, including molecular understanding, image-based diagnosis, drug design, and individualized treatment. The benefits of AI in medical image analysis are highlighted, improving diagnosis accuracy and inspection quality. Challenges in AI development are addressed, such as data standardization and the interpretability of machine learning algorithms. The potential of AI in treatment decision support, precision medicine, and prognosis prediction is discussed, emphasizing the role of AI in selecting optimal treatments and improving surgical precision. Ethical and regulatory considerations in integrating AI are mentioned, including patient trust, data security, and liability in AI-assisted surgeries. The review emphasizes the importance of an AI standard system, dataset standardization, and integrating clinical knowledge into AI algorithms. Overall, the article provides an overview of the current research on AI in CRC diagnosis, treatment, and prognosis, discussing its benefits, challenges, and future prospects in improving medical outcomes.ЦСль исслСдования - ΠΎΡ†Π΅Π½ΠΊΠ° возмоТностСй использования искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° (ИИ) Π² диагностикС, Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° (КРР), Π° Ρ‚Π°ΠΊΠΆΠ΅ обсуТдСниС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ИИ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ КРР. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ поиск Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π² поисковых систСмах Web of Science, Scopus, PubMed, Medline ΠΈ eLIBRARY. Π‘Ρ‹Π»ΠΎ просмотрСно Π±ΠΎΠ»Π΅Π΅ 100 источников ΠΏΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ ИИ для диагностики, лСчСния ΠΈ прогнозирования КРР. Π’ ΠΎΠ±Π·ΠΎΡ€ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΈΠ· 83 статСй. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, посвящСнной ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ Π΅Π³ΠΎ использованию ΠΏΡ€ΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°ΠΊΠ΅. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ этапы развития ИИ ΠΏΡ€ΠΈ КРР, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ, Π»ΡƒΡ‡Π΅Π²ΡƒΡŽ диагностику, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ лСкарств ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠ΅ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½ΡƒΡ‚Ρ‹ прСимущСства ИИ Π² Π°Π½Π°Π»ΠΈΠ·Π΅ мСдицинских ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ КВ, МРВ ΠΈ ПЭВ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ диагностики. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ развития ИИ, ΠΊΠ°ΠΊ стандартизация Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² машинного обучСния. ΠŸΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ΡΡ Ρ€ΠΎΠ»ΡŒ ИИ Π² Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠΈ лСчСния ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ эффСктивности хирургичСского Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°. Π£Ρ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ этичСскиС ΠΈ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ аспСкты ИИ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π΄ΠΎΠ²Π΅Ρ€ΠΈΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ с использованиСм ИИ. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ прСимущСства ИИ Π² диагностикС, Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ°, ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΈ пСрспСктивы ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² лСчСния

    The segmentation of colorectal MRI images.

    No full text
    One of the key criteria that informs patient management decisions for colorectal cancer is the extent of the shortest distance from the edge of the primary tumour to the edge of the mesorectum, also referred to as circumferential resection margin (CRM). This region is resected during surgery. The CRM is difficult for clinicians to measure accurately, particularly from 2D slice data. We present a method for automatically calculating and visualising the CRM distances in colorectal cancer MR images. We use local phase of the monogenic signal calculated from the MR image intensities to find edge and ridge features within the data. A non-parametric mixture model is then used to describe image intensity values within level set framework in order to segment the mesorectal fascia and the corresponding tumour and lymph nodes, as distinct regions. This segmentation is used to provide an automatic analysis of the shortest distance resection margin, and we show that this is consistent with that of the clinically accepted MERCURY method. We use the segmentation to provide a 3D visualisation of where the resection margin is smallest. Finally, we reconstruct a 3D map of the segmented anatomy. Both the visualisation methods provide a useful tool to aid surgeons in their treatment planning
    corecore