2,605 research outputs found

    The satisfiability threshold for random linear equations

    Full text link
    Let AA be a random m×nm\times n matrix over the finite field FqF_q with precisely kk non-zero entries per row and let y∈Fqmy\in F_q^m be a random vector chosen independently of AA. We identify the threshold m/nm/n up to which the linear system Ax=yA x=y has a solution with high probability and analyse the geometry of the set of solutions. In the special case q=2q=2, known as the random kk-XORSAT problem, the threshold was determined by [Dubois and Mandler 2002, Dietzfelbinger et al. 2010, Pittel and Sorkin 2016], and the proof technique was subsequently extended to the cases q=3,4q=3,4 [Falke and Goerdt 2012]. But the argument depends on technically demanding second moment calculations that do not generalise to q>3q>3. Here we approach the problem from the viewpoint of a decoding task, which leads to a transparent combinatorial proof

    The Satisfiability Threshold for k-XORSAT

    Get PDF
    We consider "unconstrained" random kk-XORSAT, which is a uniformly random system of mm linear non-homogeneous equations in F2\mathbb{F}_2 over nn variables, each equation containing k≥3k \geq 3 variables, and also consider a "constrained" model where every variable appears in at least two equations. Dubois and Mandler proved that m/n=1m/n=1 is a sharp threshold for satisfiability of constrained 3-XORSAT, and analyzed the 2-core of a random 3-uniform hypergraph to extend this result to find the threshold for unconstrained 3-XORSAT. We show that m/n=1m/n=1 remains a sharp threshold for satisfiability of constrained kk-XORSAT for every k≥3k\ge 3, and we use standard results on the 2-core of a random kk-uniform hypergraph to extend this result to find the threshold for unconstrained kk-XORSAT. For constrained kk-XORSAT we narrow the phase transition window, showing that m−n→−∞m-n \to -\infty implies almost-sure satisfiability, while m−n→+∞m-n \to +\infty implies almost-sure unsatisfiability.Comment: Version 2 adds sharper phase transition result, new citation in literature survey, and improvements in presentation; removes Appendix treating k=

    Geometrical organization of solutions to random linear Boolean equations

    Full text link
    The random XORSAT problem deals with large random linear systems of Boolean variables. The difficulty of such problems is controlled by the ratio of number of equations to number of variables. It is known that in some range of values of this parameter, the space of solutions breaks into many disconnected clusters. Here we study precisely the corresponding geometrical organization. In particular, the distribution of distances between these clusters is computed by the cavity method. This allows to study the `x-satisfiability' threshold, the critical density of equations where there exist two solutions at a given distance.Comment: 20 page

    Threshold values of Random K-SAT from the cavity method

    Full text link
    Using the cavity equations of \cite{mezard:parisi:zecchina:02,mezard:zecchina:02}, we derive the various threshold values for the number of clauses per variable of the random KK-satisfiability problem, generalizing the previous results to K≥4K \ge 4. We also give an analytic solution of the equations, and some closed expressions for these thresholds, in an expansion around large KK. The stability of the solution is also computed. For any KK, the satisfiability threshold is found to be in the stable region of the solution, which adds further credit to the conjecture that this computation gives the exact satisfiability threshold.Comment: 38 pages; extended explanations and derivations; this version is going to appear in Random Structures & Algorithm

    The backtracking survey propagation algorithm for solving random K-SAT problems

    Get PDF
    Discrete combinatorial optimization has a central role in many scientific disciplines, however, for hard problems we lack linear time algorithms that would allow us to solve very large instances. Moreover, it is still unclear what are the key features that make a discrete combinatorial optimization problem hard to solve. Here we study random K-satisfiability problems with K=3,4K=3,4, which are known to be very hard close to the SAT-UNSAT threshold, where problems stop having solutions. We show that the backtracking survey propagation algorithm, in a time practically linear in the problem size, is able to find solutions very close to the threshold, in a region unreachable by any other algorithm. All solutions found have no frozen variables, thus supporting the conjecture that only unfrozen solutions can be found in linear time, and that a problem becomes impossible to solve in linear time when all solutions contain frozen variables.Comment: 11 pages, 10 figures. v2: data largely improved and manuscript rewritte

    Reweighted belief propagation and quiet planting for random K-SAT

    Full text link
    We study the random K-satisfiability problem using a partition function where each solution is reweighted according to the number of variables that satisfy every clause. We apply belief propagation and the related cavity method to the reweighted partition function. This allows us to obtain several new results on the properties of random K-satisfiability problem. In particular the reweighting allows to introduce a planted ensemble that generates instances that are, in some region of parameters, equivalent to random instances. We are hence able to generate at the same time a typical random SAT instance and one of its solutions. We study the relation between clustering and belief propagation fixed points and we give a direct evidence for the existence of purely entropic (rather than energetic) barriers between clusters in some region of parameters in the random K-satisfiability problem. We exhibit, in some large planted instances, solutions with a non-trivial whitening core; such solutions were known to exist but were so far never found on very large instances. Finally, we discuss algorithmic hardness of such planted instances and we determine a region of parameters in which planting leads to satisfiable benchmarks that, up to our knowledge, are the hardest known.Comment: 23 pages, 4 figures, revised for readability, stability expression correcte

    Hiding Satisfying Assignments: Two are Better than One

    Full text link
    The evaluation of incomplete satisfiability solvers depends critically on the availability of hard satisfiable instances. A plausible source of such instances consists of random k-SAT formulas whose clauses are chosen uniformly from among all clauses satisfying some randomly chosen truth assignment A. Unfortunately, instances generated in this manner tend to be relatively easy and can be solved efficiently by practical heuristics. Roughly speaking, as the formula's density increases, for a number of different algorithms, A acts as a stronger and stronger attractor. Motivated by recent results on the geometry of the space of satisfying truth assignments of random k-SAT and NAE-k-SAT formulas, we introduce a simple twist on this basic model, which appears to dramatically increase its hardness. Namely, in addition to forbidding the clauses violated by the hidden assignment A, we also forbid the clauses violated by its complement, so that both A and complement of A are satisfying. It appears that under this "symmetrization'' the effects of the two attractors largely cancel out, making it much harder for algorithms to find any truth assignment. We give theoretical and experimental evidence supporting this assertion.Comment: Preliminary version appeared in AAAI 200
    • …
    corecore