14,746 research outputs found

    Unifying Distributed Processing and Open Hypertext through a Heterogeneous Communication Model

    No full text
    A successful distributed open hypermedia system can be characterised by a scaleable architecture which is inherently distributed. While the architects of distributed hypermedia systems have addressed the issues of providing and retrieving distributed resources, they have often neglected to design systems with the inherent capability to exploit the distributed processing of this information. The research presented in this paper describes the construction and use of an open hypermedia system concerned equally with both of these facets

    A Longitudinal Study on the Effect of Hypermedia on Learning Dimensions, Culture and Teaching Evaluation

    Get PDF
    Earlier studies have found the effectiveness of hypermedia systems as learning tools heavily depend on their compatibility with the cognitive processes by which students perceive, understand and learn from complex information\ud sources. Hence, a learner’s cognitive style plays a significant role in determining how much is learned from a hypermedia learning system. A longitudinal study of Australian and Malaysian students was conducted over two semesters in 2008. Five types of predictor variables were investigated with cognitive style: (i) learning dimensions (nonlinear learning, learner control, multiple tools); (ii)\ud culture dimensions (power distance, uncertainty avoidance, individualism/collectivism, masculinity/femininity, long/short term orientation); (iii) evaluation of units; (iv) student demographics; and (v) country in which students studied. This study uses both multiple linear regression and linear mixed effects to model the relationships among the variables. The results from this study support the findings of a cross-sectional study conducted by Lee et al. (2010); in particular, the predictor variables are significant to determine students’ cognitive style

    An Open Framework for Integrating Widely Distributed Hypermedia Resources

    No full text
    The success of the WWW has served as an illustration of how hypermedia functionality can enhance access to large amounts of distributed information. However, the WWW and many other distributed hypermedia systems offer very simple forms of hypermedia functionality which are not easily applied to existing applications and data formats, and cannot easily incorporate alternative functions which would aid hypermedia navigation to and from existing documents that have not been developed with hypermedia access in mind. This paper describes the extension to a distributed environment of the open hypermedia functionality of the Microcosm system, which is designed to support the provision of hypermedia access to a wide range of source material and application, and to offer straightforward extension of the system to incorporate new forms of information access

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Effective CAL: Theory and practice

    Get PDF
    This paper looks at the creation of CAL material in theory and practice through the perspective of a CAL development unit, the Hypertext Support Unit at the University of Kent. With similar units now in place in other institutions, the production of CAL is taking place at a rapid pace, often with the evaluation of the applications disproportionately lagging behind. This inevitably raises questions of whether what we are producing is effective CAL, and what approaches should be taken to use the potential of multimedia in a learning environment

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible
    corecore