3,547 research outputs found

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using BradStack as a Case Study

    Full text link
    Cloud computing has emerged as a popular paradigm and an attractive model for providing a reliable distributed computing model.it is increasing attracting huge attention both in academic research and industrial initiatives. Cloud deployments are paramount for institution and organizations of all scales. The availability of a flexible, free open source cloud platform designed with no propriety software and the ability of its integration with legacy systems and third-party applications are fundamental. Open stack is a free and opensource software released under the terms of Apache license with a fragmented and distributed architecture making it highly flexible. This project was initiated and aimed at designing a secured cloud infrastructure called BradStack, which is built on OpenStack in the Computing Laboratory at the University of Bradford. In this report, we present and discuss the steps required in deploying a secured BradStack Multi-node cloud infrastructure and conducting Penetration testing on OpenStack Services to validate the effectiveness of the security controls on the BradStack platform. This report serves as a practical guideline, focusing on security and practical infrastructure related issues. It also serves as a reference for institutions looking at the possibilities of implementing a secured cloud solution.Comment: 38 pages, 19 figures

    Next Generation AI-Based Firewalls: a Comparative Study

    Get PDF
    Cybersecurity is a critical concern in the digital age, demanding innovative approaches to safeguard sensitive information and systems. This paper conducts a thorough examination of next-generation firewalls (NGFWs) that integrate artificial intelligence (AI) technologies, presenting a comparative analysis of their efficacy. As traditional firewalls fall short in addressing modern cyber threats, the incorporation of AI provides a promising avenue for enhanced threat detection and mitigation. The literature review explores existing research on AI-based firewalls, delving into methodologies and technologies proposed by leading experts in the field. A compilation of 20-25 references from reputable sources, including ijcseonline.org, forms the basis for this comparative study. The selected references provide insights into various AI-based firewall architectures, algorithms, and performance metrics, laying the groundwork for a comprehensive analysis. The methodology section outlines the systematic approach employed to compare different AI-based firewall methods. Leveraging machine learning and deep learning approaches, the study assesses key performance metrics such as detection accuracy, false positive rates, and computational efficiency. The goal is to provide a nuanced understanding of the strengths and weaknesses inherent in each approach, facilitating an informed evaluation. The comparative analysis section employs graphical representations to elucidate the findings, offering a visual overview of the performance disparities among selected AI-based firewall methods. Pros and cons are meticulously examined, providing stakeholders with valuable insights for decision-making in cybersecurity strategy. This research aims to contribute to the ongoing discourse on AI-based firewalls, addressing current limitations and paving the way for advancements that fortify the cybersecurity landscape

    Cyber-security of Cyber-Physical Systems (CPS)

    Get PDF
    This master's thesis reports on security of a Cyber-Physical System (CPS) in the department of industrial engineering at UiT campus Narvik. The CPS targets connecting distinctive robots in the laboratory in the department of industrial engineering. The ultimate objective of the department is to propose such a system for the industry. The thesis focuses on the network architecture of the CPS and the availability principle of security. This report states three research questions that are aimed to be answered. The questions are: what a secure CPS architecture for the purpose of the existing system is, how far the current state of system is from the defined secure architecture, and how to reach the proposed architecture. Among the three question, the first questions has absorbed the most attention of this project. The reason is that a secure and robust architecture would provide a touchstone that makes answering the second and third questions easier. In order to answer the questions, Cisco SAFE for IoT threat defense for manufacturing approach is chosen. The architectural approach of Cisco SAFE for IoT, with similarities to the Cisco SAFE for secure campus networks, provides a secure network architecture based on business flows/use cases and defining related security capabilities. This approach supplies examples of scenarios, business flows, and security capabilities that encouraged selecting it. It should be noted that Cisco suggests its proprietary technologies for security capabilities. According to the need of the project owners and the fact that allocating funds are not favorable for them, all the suggested security capabilities are intended to be open-source, replacing the costly Cisco-proprietary suggestions. Utilizing the approach and the computer networking fundamentals resulted in the proposed secure network architecture. The proposed architecture is used as a touchstone to evaluate the existing state of the CPS in the department of industrial engineering. Following that, the required security measures are presented to approach the system to the proposed architecture. Attempting to apply the method of Cisco SAFE, the identities using the system and their specific activities are presented as the business flow. Based on the defined business flow, the required security capabilities are selected. Finally, utilizing the provided examples of Cisco SAFE documentations, a complete network architecture is generated. The architecture consists of five zones that include the main components, security capabilities, and networking devices (such as switches and access points). Investigating the current state of the CPS and evaluating it by the proposed architecture and the computer networking fundamentals, helped identifying six important shortcomings. Developing on the noted shortcomings, and identification of open-source alternatives for the Cisco-proprietary technologies, nine security measures are proposed. The goal is to perform all the security measures. Thus, the implementations and solutions for each security measure is noted at the end of the presented results. The security measures that require purchasing a device were not considered in this project. The reasons for this decision are the time-consuming process of selecting an option among different alternatives, and the prior need for grasping the features of the network with the proposed security capabilities; features such as amount and type of traffic inside the network, and possible incidents detected using an Intrusion Detection Prevention System. The attempts to construct a secure cyber-physical system is an everlasting procedure. New threats, best practices, guidelines, and standards are introduced on a daily basis. Moreover, business needs could vary from time to time. Therefore, the selected security life-cycle is required and encouraged to be used in order to supply a robust lasting cyber-physical system

    2021-2022 Addendum

    Get PDF
    Contains information on courses and class descriptions as well as campus resources at Collin College.https://digitalcommons.collin.edu/catalogs/1041/thumbnail.jp

    Exploring the Cloud: Vulnerabilities and Cybersecurity Challenges

    Get PDF
    Defending cloud platforms against cyberattacks is a critical aspect of modern cybersecurity. With the widespread adoption of cloud computing, organizations face new challenges in protecting their data and infrastructure from evolving threats. This article provides an overview of the strategies and techniques used to defend cloud platforms against cyberattacks. The article begins by highlighting the increasing reliance on cloud platforms and the potential risks associated with their use. It emphasizes the importance of robust security measures to protect sensitive data, applications, and resources stored in the cloud. The article then introduces the key techniques for defending cloud platforms, including strong access controls, encryption, secure configurations, regular patching, network segmentation, and logging and monitoring. The article further explores the significance of proactive monitoring and incident response planning in identifying and mitigating potential security incidents. It emphasizes the role of collaboration between organizations, government agencies, and cloud service providers in developing comprehensive defense strategies. The article also mentions the need for continuous training and skills development to stay ahead of emerging threats and effectively defend against cyberattacks. The article concludes by emphasizing the relevance of the topic in today's digital landscape, where cloud platforms play a pivotal role in driving innovation and enabling digital transformation. It underscores the necessity for organizations to adopt a multi-layered defense approach and stay updated with the latest security practices to protect their cloud environments from cyber threats

    Packet filter performance monitor (anti-DDOS algorithm for hybrid topologies)

    Get PDF
    DDoS attacks are increasingly becoming a major problem. According to Arbor Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. Hacker News stated that the largest DDoS attack as of March 2016 was over 600 Gbps, and the attack targeted the entire BBC website. With this increasing frequency and threat, and the average DDoS attack duration at about 16 hours, we know for certain that DDoS attacks will not be going away anytime soon. Commercial companies are not effectively providing mitigation techniques against these attacks, considering that major corporations face the same challenges. Current security appliances are not strong enough to handle the overwhelming traffic that accompanies current DDoS attacks. There is also a limited research on solutions to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS attacks in order to minimize downtime. One possible solution is for organizations to implement their own architectures that are meant to mitigate DDoS attacks. In this dissertation, we present and implement an architecture that utilizes an activity monitor to change the states of firewalls based on their performance in a hybrid network. Both firewalls are connected inline. The monitor is mirrored to monitor the firewall states. The monitor reroutes traffic when one of the firewalls become overwhelmed due to a HTTP DDoS flooding attack. The monitor connects to the API of both firewalls. The communication between the rewalls and monitor is encrypted using AES, based on PyCrypto Python implementation. This dissertation is structured in three parts. The first found the weakness of the hardware firewall and determined its threshold based on spike and endurance tests. This was achieved by flooding the hardware firewall with HTTP packets until the firewall became overwhelmed and unresponsive. The second part implements the same test as the first, but targeted towards the virtual firewall. The same parameters, test factors, and determinants were used; however a different load tester was utilized. The final part was the implementation and design of the firewall performance monitor. The main goal of the dissertation is to minimize downtime when network firewalls are overwhelmed as a result of a DDoS attack
    • …
    corecore