89 research outputs found

    Forward Analysis for WSTS, Part III: Karp-Miller Trees

    Get PDF
    This paper is a sequel of "Forward Analysis for WSTS, Part I: Completions" [STACS 2009, LZI Intl. Proc. in Informatics 3, 433-444] and "Forward Analysis for WSTS, Part II: Complete WSTS" [Logical Methods in Computer Science 8(3), 2012]. In these two papers, we provided a framework to conduct forward reachability analyses of WSTS, using finite representations of downward-closed sets. We further develop this framework to obtain a generic Karp-Miller algorithm for the new class of very-WSTS. This allows us to show that coverability sets of very-WSTS can be computed as their finite ideal decompositions. Under natural effectiveness assumptions, we also show that LTL model checking for very-WSTS is decidable. The termination of our procedure rests on a new notion of acceleration levels, which we study. We characterize those domains that allow for only finitely many accelerations, based on ordinal ranks

    Decidability Issues for Petri Nets

    Get PDF
    This is a survey of some decidability results for Petri nets, covering the last three decades. The presentation is structured around decidability of specific properties, various behavioural equivalences and finally the model checking problem for temporal logics

    Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness

    Get PDF
    We consider Dense-Timed Petri Nets (TPN), an extension of Petri nets in which each token is equipped with a real-valued clock and where the semantics is lazy (i.e., enabled transitions need not fire; time can pass and disable transitions). We consider the following verification problems for TPNs. (i) Zenoness: whether there exists a zeno-computation from a given marking, i.e., an infinite computation which takes only a finite amount of time. We show decidability of zenoness for TPNs, thus solving an open problem from [Escrig et al.]. Furthermore, the related question if there exist arbitrarily fast computations from a given marking is also decidable. On the other hand, universal zenoness, i.e., the question if all infinite computations from a given marking are zeno, is undecidable. (ii) Token liveness: whether a token is alive in a marking, i.e., whether there is a computation from the marking which eventually consumes the token. We show decidability of the problem by reducing it to the coverability problem, which is decidable for TPNs. (iii) Boundedness: whether the size of the reachable markings is bounded. We consider two versions of the problem; namely semantic boundedness where only live tokens are taken into consideration in the markings, and syntactic boundedness where also dead tokens are considered. We show undecidability of semantic boundedness, while we prove that syntactic boundedness is decidable through an extension of the Karp-Miller algorithm.Comment: 61 pages, 18 figure

    Forward Analysis for WSTS, Part III: Karp-Miller Trees

    Get PDF

    Computing Optimal Coverability Costs in Priced Timed Petri Nets

    Get PDF
    We consider timed Petri nets, i.e., unbounded Petri nets where each token carries a real-valued clock. Transition arcs are labeled with time intervals, which specify constraints on the ages of tokens. Our cost model assigns token storage costs per time unit to places, and firing costs to transitions. We study the cost to reach a given control-state. In general, a cost-optimal run may not exist. However, we show that the infimum of the costs is computable.Comment: 26 pages. Contribution to LICS 201

    The Semilinear Home-Space Problem Is Ackermann-Complete for Petri Nets

    Get PDF
    A set of configurations H is a home-space for a set of configurations X of a Petri net if every configuration reachable from (any configuration in) X can reach (some configuration in) H. The semilinear home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations X, H, if H is a home-space for X. In 1989, David de Frutos Escrig and Colette Johnen proved that the problem is decidable when X is a singleton and H is a finite union of linear sets with the same periods. In this paper, we show that the general (semilinear) problem is decidable. This result is obtained by proving a duality between the reachability problem and the non-home-space problem. In particular, we prove that for any Petri net and any linear set of configurations L we can effectively compute a semilinear set C of configurations, called a non-reachability core for L, such that for every set X the set L is not a home-space for X if, and only if, C is reachable from X. We show that the established relation to the reachability problem yields the Ackermann-completeness of the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial marking, the set of minimal reachable markings can be constructed in Ackermannian time

    On the Home-Space Problem for Petri Nets and its Ackermannian Complexity

    Full text link
    A set of configurations H is a home-space for a set of configurations X of a Petri net if every configuration reachable from (any configuration in) X can reach (some configuration in) H. The semilinear home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations X, H, if H is a home-space for X. In 1989, David de Frutos Escrig and Colette Johnen proved that the problem is decidable when X is a singleton and H is a finite union of linear sets with the same periods. In this paper, we show that the general (semilinear) problem is decidable. This result is obtained by proving a duality between the reachability problem and the non-home-space problem. In particular, we prove that for any Petri net and any semilinear set of configurations H we can effectively compute a semilinear set C of configurations, called a non-reachability core for H, such that for every set X the set H is not a home-space for X if, and only if, C is reachable from X. We show that the established relation to the reachability problem yields the Ackermann-completeness of the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial marking, the set of minimal reachable markings can be constructed in Ackermannian time

    Coverability Synthesis in Parametric Petri Nets

    Get PDF
    We study Parametric Petri Nets (PPNs), i.e., Petri nets for which some arc weights can be parameters. In that setting, we address a problem of parameter synthesis, which consists in computing the exact set of values for the parameters such that a given marking is coverable in the instantiated net. Since the emptiness of that solution set is already undecidable for general PPNs, we address a special case where parameters are used only as input weights (preT-PPNs), and consequently for which the solution set is downward-closed. To this end, we invoke a result for the representation of upward closed set from Valk and Jantzen. To use this procedure, we show we need to decide universal coverability, that is decide if some marking is coverable for every possible values of the parameters. We therefore provide a proof of its EXPSPACE-completeness, thus settling the previously open problem of its decidability. We also propose an adaptation of this reasoning to the case of parameters used only as output weights (postT-PPNs). In this case, the condition to use this procedure can be reduced to the decidability of the existential coverability, that is decide if there exists values of the parameters making a given marking coverable. This problem is known decidable but we provide here a cleaner proof, providing its EXPSPACE-completeness, by reduction to Omega Petri Nets
    • 

    corecore