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Abstract. We consider Dense-Timed Petri Nets (TPN), an extension of Petri nets in
which each token is equipped with a real-valued clock and where the semantics is lazy
(i.e., enabled transitions need not fire; time can pass and disable transitions). We consider
the following verification problems for TPNs.

(i) Zenoness: whether there exists a zeno-computation from a given marking, i.e., an
infinite computation which takes only a finite amount of time. We show decidability of
zenoness for TPNs, thus solving an open problem from [dFERA00]. Furthermore, the
related question if there exist arbitrarily fast computations from a given marking is also
decidable.

On the other hand, universal zenoness, i.e., the question if all infinite computations
from a given marking are zeno, is undecidable.

(ii) Token liveness: whether a token is alive in a marking, i.e., whether there is a
computation from the marking which eventually consumes the token. We show decidability
of the problem by reducing it to the coverability problem, which is decidable for TPNs.

(iii) Boundedness: whether the size of the reachable markings is bounded. We consider
two versions of the problem; namely semantic boundedness where only live tokens are taken
into consideration in the markings, and syntactic boundedness where also dead tokens
are considered. We show undecidability of semantic boundedness, while we prove that
syntactic boundedness is decidable through an extension of the Karp-Miller algorithm.
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1. Introduction

Petri nets [Pet62, Pet77, Mur89] are one of the most widely used models for analysis and
verification of concurrent systems. Many different formalisms have been proposed which
extend Petri nets with clocks and real-time constraints, leading to various definitions of
Timed Petri nets (TPNs). A complete discussion of all these formalisms is beyond the
scope of this paper and the interested reader is referred to the survey by Bowden [Bow96]
and a more recent overview in [BCH+05].

In this paper we consider the TPN model used in [AN01] where each token has an age
which is represented by a real-valued clock, and the firing-semantics is lazy (like in standard
untimed Petri nets). This dense time TPN model of [AN01] is an adaption of the discrete
time model of Escrig et al. [RGdFE99, dFERA00].

The main difference between dense time TPN and discrete time TPN is the following.
In discrete time nets, time is interpreted as being incremented in discrete steps and thus the
ages of tokens are in a countable domain, commonly the natural numbers. Such discrete
time nets have been studied in, e.g., [RGdFE99, dFERA00]. In dense time nets, time is
interpreted as continuous, and the ages of tokens are real numbers. Some problems for
dense time nets have been studied in [AN01, AN02, ADMN04].

In this paper we mainly consider the dense time case. However, we also solve some
open questions for discrete time nets, since they follow as corollaries from our more general
results on the dense time case.

The main characteristics of our TPN model (i.e., the model of [AN01]) are the following.

• Our TPNs are not bounded. The number of tokens present in the net may grow beyond
any finite bound.

• Each token has an age which is represented by a real-valued clock, i.e., time is continuous.
• A transition is enabled iff there are enough tokens of the right ages on its input places.

The right ages are specified by labeling the input arcs of transitions with time intervals.
• The semantics is lazy, just like in standard untimed Petri nets. This means that an

enabled transition need not fire immediately. It is possible that more time will pass and
disable the transition again. (This is in contrast to many other classes of Petri nets with
time, which have an eager semantics where transitions must fire when they are enabled;
see [BCH+05] for an overview.)

• When a transition fires, the clocks of the consumed tokens are not preserved. Tokens
which are newly created by a transition have their own new clocks.

The formal definition of this TPN model is given in Section 2.
TPN can, among other things, model parameterized timed systems (systems consisting

of an unbounded number of timed processes) [AN01].
Our TPN model is computationally more powerful than timed automata [AD90, AD94],

since it operates on a potentially unbounded number of clocks. In particular, TPN subsume
normal untimed Petri nets w.r.t. the semantics of fired transition sequences, while finite
timed automata do not subsume Petri nets. Furthermore, both the reachability problem
[RGdFE99] and several liveness problems [dFERA00, AN02] are undecidable for TPNs (even
in the discrete time case).

Most verification problems for TPNs are extensions of both classical problems previously
studied for standard (untimed) Petri nets, and problems for finite-state timed models like
timed automata. We consider several verification problems for TPNs.
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Zenoness. A fundamental progress property for timed systems is that it should be possible
for time to diverge [Tri99]. This requirement is justified by the fact that timed processes
cannot be infinitely fast. Computations violating this property are called zeno. Given a
TPN and a marking M , we check whether M is a zeno-marking, i.e., whether there is
an infinite computation from M with a finite duration. The zenoness problem is solved
in [AD90, Alu91] for timed automata using the region graph construction. Since region
graphs only deal with a finite number of clocks, the algorithm of [AD90, Alu91] cannot
be extended to check zenoness for TPNs. In Section 3, we solve the zenoness problem for
TPNs. To do this, we consider a subclass of transfer nets [FS98] which we call simultaneous-
disjoint transfer net (SD-TN). This class is an extension of standard Petri nets, in which
we also have transfer transitions which may move all tokens in one place to another with
the restriction that (a) all such transfers take place simultaneously and (b) the sources and
targets of all transfers are disjoint.

Given a TPN N , we perform the following three steps:

- Derive a corresponding SD-TN N ′.
- Characterize the set of markings in N ′ from which there are infinite computations1.
- Re-interpret the set computed above as a characterization of the set of zeno-markings in
N .

In fact, the above procedure solves a more general problem than that of checking whether
a given marking is zeno; namely it gives a symbolic characterization of the set of zeno-
markings.

The zenoness problem was left open in [dFERA00] both for dense TPNs (the model we
consider in this paper) and for discrete TPNs (where behavior is interpreted over the discrete
time domain). The construction given in this paper considers the more general dense time
case. The construction can easily be modified (in fact simplified) to deal with the discrete
time case. (In the discrete time case, unlike for dense time, every zeno computation must
have an infinite suffix that takes zero time.)

Arbitrarily Fast Computations. In Section 5 we consider a question related to zenoness:
‘Given a marking M , is it the case that for every ǫ > 0 there is an M -computation which
takes at most ǫ time?’ This is a stronger requirement than zenoness, and we call markings
which satisfy it allzeno-markings. Like for zeno-markings, one can compute a symbolic
characterization of the set of allzeno-markings, and thus the problem is decidable.

Markings from which there are computations which take no time at all are called
zerotime-markings. For discrete time nets, allzeno-markings and zerotime-markings co-
incide, but for general dense time nets zerotime-markings are (in general) a strict subset.
Again one can compute a symbolic characterization of the set of zerotime-markings.

Universal Zenoness. In the zenoness problem, the question was whether there existed
at least one zeno run, i.e., an infinite computation which takes finite time. The universal
zenoness problem is the question whether all infinite runs are zeno. The negation of this
question is the following: Given some marking M , does there exist some non-zeno M -
computation, i.e., an infinite computation from M which takes an infinite amount of time?
In Section 6 we show that this question (and thus universal zenoness) is undecidable, by a
reduction from lossy counter machines [May03].

1 In contrast to SD-TN, such a characterization is not computable for general transfer nets [May03].
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Token Liveness. Markings in TPNs may contain tokens which cannot be used by any
future computations of the TPN. Such tokens do not affect the behavior of the TPN and are
therefore called dead tokens. We give an algorithm to check, given a token and a marking,
whether the token is dead (or alive). We do this by reducing the problem to the problem
of coverability in TPNs. An algorithm to solve the coverability problem is given in [AN01].

Token liveness for dense TPNs was left open in [dFERA00].

Boundedness. We consider the boundedness problem for TPNs: given a TPN and an
initial marking, check whether the size of reachable markings is bounded. The decidability
of this problem depends on whether we take dead tokens into consideration. In syntactic
boundedness one considers dead tokens as part of the (size of the) marking, while in semantic
boundedness we disregard dead tokens; that is we check whether we can reach markings with
unboundedly many live tokens. Using techniques similar to [RGdFE99] it can be shown that
semantic boundedness is undecidable. On the other hand we show decidability of syntactic
boundedness. This is achieved through an extension of the Karp-Miller algorithm where
each node represents a region (rather than a single marking). The underlying ordering
on the nodes (regions) inside the Karp-Miller tree is a well quasi-ordering [Hig52]. This
guarantees termination of the procedure.

Decidability of syntactic boundedness was shown for the simpler discrete time case in
[dFERA00], while the problem was left open for the dense case.

2. Timed Petri Nets and Regions

Timed Petri Nets. We consider Timed Petri Nets (TPNs) where each token is equipped with
a real-valued clock representing the age of the token. The firing conditions of a transition
include the usual ones for Petri nets. Additionally, each arc between a place and a transition
is labeled with a time-interval whose bounds are natural numbers (or possibly ∞ as upper
bound). These intervals can be open, closed or half open. When firing a transition, tokens
which are removed (added) from (to) places must have ages lying in the intervals of the
corresponding transition arcs.

We use N,R≥0,R>0 to denote the sets of natural numbers (including 0), nonnegative
reals, and strictly positive reals, respectively. For a natural number k, we use N

k and N
k
ω to

denote the set of vectors of size k over N and N ∪ {ω}, respectively (ω represents the first
limit ordinal).

We use a set Intrv of intervals. An open interval is written as (w : z) where w ∈ N and
z ∈ N ∪ {∞}. Intervals can also be closed in one or both directions, e.g. [w : z] is closed in
both directions and [w : z) is closed to the left and open to the right.

Definition 2.1. For a set A, we use A∗ and A⊙ to denote the set of finite words and
finite multisets over A, respectively. We view a multiset b over A as a mapping b : A 7→
N. Sometimes, we write finite multisets as lists with multiple occurrences, so [2.43 , 5.12]
represents a multiset b over R

≥0 where b(2.4) = 3, b(5.1) = 2 and b(x) = 0 for x 6= 2.4, 5.1.
For multisets b1 and b2 over N, we say that b1 ≤ b2 if b1(a) ≤ b2(a) for each a ∈ A. The
multiset union b = b1 ∪ b2 is defined by b(a) = max (b1(a), b2(a)) for each a ∈ A and the
multiset intersection b = b1 ∩ b2 is defined by b(a) = min (b1(a), b2(a)) for each a ∈ A.

We define b1 + b2 to be the multiset b where b(a) = b1(a) + b2(a), and (assuming
b1 ≤ b2) we define b2 − b1 to be the multiset b where b(a) = b2(a) − b1(a), for each a ∈ A.
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For a multiset b : A 7→ N, we write |b| :=
∑

a∈A b(a) for the number of elements in b.
We use ∅ to denote the empty multiset and ǫ to denote the empty word.

Given a set A with partial order ≤, we define a partial order ≤w on A∗ as follows.
We have a1 . . . an ≤w b1 . . . bm iff there is a subsequence bj1 . . . bjn of b1 . . . bm s.t. ∀k ∈
{1, . . . , n}. ak ≤ bjk

.
Given a set A with an ordering � and a subset B ⊆ A, B is said to be upward closed

in A if a1 ∈ B, a2 ∈ A and a1 � a2 implies a2 ∈ B. Given a set B ⊆ A, we define the
upward closure B ↑ to be the set {a ∈ A| ∃a′ ∈ B : a′ � a}. A downward closed set B and
the downward closure B ↓ are defined in a similar manner. We also use a ↑, a ↓, a instead
of {a} ↑, {a} ↓, {a}, respectively.

Definition 2.2. [AN01] A Timed Petri Net (TPN) is a tuple N = (P, T, In,Out) where P
is a finite set of places, T is a finite set of transitions and In,Out are partial functions from
T × P to Intrv .

If In(t , p) (respectively Out(t , p)) is defined, we say that p is an input (respectively
output) place of t.

We let max denote the maximum integer appearing on the arcs of a given TPN.
A marking M of N is a finite multiset over P × R

≥0. The marking M defines the
numbers and ages of tokens in each place in the net. We identify a token in a marking M
by the pair (p, x) representing its place and age in M . Then, M((p, x)) defines the number
of tokens with age x in place p. Abusing notation again, we define, for each place p, a
multiset M(p) over R

≥0, where M(p)(x) = M((p, x)).
For a marking M of the form [(p1, x1) , . . . , (pn, xn)] and x ∈ R

>0, we use M+x to
denote the marking [(p1, x1 + x) , . . . , (pn, xn + x)].

Transitions: We define two transition relations on the set of markings: timed transition
and discrete transition. A timed transition increases the age of each token by the same real
number. Formally, for x ∈ R

>0, M1 −→x M2 if M2 = M+x
1 . We use M1 −→δ M2 to denote

that M1 −→x M2 for some x ∈ R
>0.

We define the set of discrete transitions −→D as
⋃

t∈T −→t, where −→t represents
the effect of firing the discrete transition t. More precisely, M1 −→t M2 if the set of
input arcs {(p,I)| In(t , p) = I} is of the form {(p1,I1), . . . , (pk,Ik)}, the set of output
arcs {(p,I)| Out(t , p) = I} is of the form {(q1,J1), . . . , (qℓ,Jℓ)}, and there are multisets
b1 = [(p1, x1) , . . . , (pk, xk)] and b2 = [(q1, y1) , . . . , (qℓ, yℓ)] over P × R

≥0 such that the
following holds:
- b1 ≤M1

- xi ∈ Ii, for i : 1 ≤ i ≤ k.
- yi ∈ Ji, for i : 1 ≤ i ≤ ℓ.
- M2 = (M1 − b1) + b2.
We say that t is enabled in M if there is a b1 such that the first two conditions are satisfied.
A transition t may be fired only if for each incoming arc, there is a token with the right
age in the corresponding input place. These tokens will be removed when the transition
is fired. The newly produced tokens have ages which are chosen nondeterministically from
the relevant intervals on the transitions’ output arcs.

We write −→=−→δ ∪ −→D to denote all transitions,
∗

−→ to denote the reflexive-
transitive closure of −→ and −→+

D to denote the transitive closure of −→D. It is easy to

extend
∗

−→ for sets of markings. We define Reach(M) := {M ′ |M
∗

−→ M ′} as the set of
markings reachable from M .
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Computations: Generally, a computation from a given marking is just a (finite or infinite)
sequence of enabled transitions. For technical reasons, we need to distinguish two types of
computation: disc-computations where the first transition is a discrete transition and time-
computations where the first transition is a timed transition.

A M0-disc-computation π from a marking M0 is a computation that starts with a
discrete transition. It is a (finite or infinite) sequence

M0 −→+
D M ′

0 −→x0
M1 −→+

D M ′
1 −→x1

M2 −→+
D M ′

2 −→x2
M3 −→+

D . . .

of markings and transitions where xi ∈ R
>0. (If the sequence is infinite but contains only

finitely many timed transitions then the infinite suffix has the form −→ω
D.) It follows that

• The first transition is a discrete transition. Thus M0 −→+
D M ′

0.
• Every timed transition has a non-zero delay, i.e., xi ∈ R

>0.
• Without restriction, timed transitions cannot directly follow each other. We can require

this, since −→x1
−→x2

has the same effect as −→(x1+x2). Therefore, timed transitions

must be separated by at least one discrete transition. Thus we require Mi −→
+
D M ′

i for
i ≥ 0.

• This implies that every infinite computation π must contain infinitely many discrete
transitions −→D. An infinite computation may contain either finitely many or infinitely
many timed transitions.

The delay of the disc-computation π is defined as

∆(π) :=
∞
∑

i=0

xi

A M0-time-computation π from a marking M has the form

M −→x M0
π′

→ . . .

where x ∈ R
>0 and π′ is a M0-disc-computation. In this case the delay ∆(π) := x+ ∆(π′).

Intuitively, the delay is the total amount of time passed in all timed transitions in the
sequence. For infinite computations π, the delay ∆(π) can be either infinite or finite. In

the latter case the computation π is called a zeno computation (see Section 3). By M
π
→

we denote the fact that π is an M -computation.

ba
(1 : 3)(5 : 7)

c

(1 : 3)
(3 : 5)

(1 : 2)(0 : 1)

Q

R S

(5 : 6)

Figure 1: A small timed Petri net.

Figure 1 shows an example of a TPN where P = {Q,R, S} and T = {a, b, c}. For
instance, In(b,Q) = (3 : 5 ) and Out(b,R) = (0 : 1 ) and Out(b,S ) = (1 : 2 ). A marking
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of the given net is M0 = [(Q, 2.0), (R, 4.3), (R, 3.5)]. A timed transition fromM0 is given by
M0 −→1.5 M1 where M1 = [(Q, 3.5), (R, 5.8), (R, 5.0)]. An example of a discrete transition
is given by M1 −→b M2 where M2 = [(R, 0.2), (S, 1.6), (R, 5.8), (R, 5.0)].

Our model subsumes untimed Petri nets in the following sense. If all intervals are of
the form [0 : ∞) then the age of the tokens does not matter for the transitions, and thus
the possible behavior (i.e., sequences of fired transitions) is the same as that of an untimed
Petri net with the same structure. However, there cannot be any bijection between the sets
of markings of a timed- and the corresponding untimed net, since the former is (in general)
uncountable.

Next, we recall a constraint system called regions defined for Timed automata [AD90].

Regions: A region defines the integral parts of clock values up to max (the exact age of a
token is irrelevant if it is greater than max ), and also the ordering of the fractional parts.
For TPNs, we need to use a variant which also defines the place in which each token (clock)
resides. Following Godskesen [God94], we represent a region in the following manner.

Definition 2.3. A region is a triple (b0, w, bmax ) where

• b0 ∈ (P × {0, . . . ,max})⊙. b0 is a multiset of pairs. A pair of the form (p, n) represents
a token with age exactly n in place p.

• w ∈
(

(P × {0, . . . ,max − 1})⊙ − {∅}
)∗

. This means that w is a word over the set

(P × {0, . . . ,max − 1})⊙ − {∅}, i.e., w is a word where each element in the word is a
non-empty multiset over P × {0, . . . ,max − 1}. The pair (p, n) represents a token in
place p with age x such that x ∈ (n : n+ 1). Pairs in the same multiset represent tokens
whose ages have equal fractional parts. The order of the multisets in w corresponds to
the order of the fractional parts (i.e., smaller fractional parts come first in the word w).

• bmax ∈ P⊙. bmax is a multiset over P representing tokens with ages strictly greater than
max . Since the actual ages of these tokens are irrelevant, the information about their
ages is omitted in the representation. (This is because the transitions in the net cannot
distinguish between different ages of tokens if these are strictly bigger than max . Note
that tokens with age exactly max are represented in b0.)

The semantic of a region (b0, w, bmax ) would not change if we allowed empty multisets to
appear in w. Therefore we forbid this in order to obtain a unique representation. However,
the multisets b0 and bmax can be empty.

Formally, each region R characterizes an infinite set of markings [[R]] as follows. Assume
a marking M = [(p1, x1) , . . . , (pn, xn)] and a region R = (b0, b1b2 · · · bm, bm+1). Let each

multiset bj be of the form
[

(

q(j,1), y(j,1)

)

, . . . ,
(

q(j,ℓj), y(j,ℓj)

)]

for j : 0 ≤ j ≤ m and bm+1 is

of the form [q(m+1,1), . . . , q(m+1,lm+1)]. We say that M satisfies R, i.e., M ∈ [[R]], iff there is a
bijection h from the set {1, . . . , n} to the set of pairs {(j, k) | (0 ≤ j ≤ m+ 1) ∧ (1 ≤ k ≤ ℓj)}
such that the following conditions are satisfied.

• pi = qh(i). Each token should have the same place as that required by the corresponding
element in R.

• If h(i) = (j, k) then j = m + 1 iff xi > max . Tokens older than max should correspond
to elements in multiset bm+1. The actual ages of these tokens are not relevant.

• If xi ≤ max and h(i) = (j, k) then ⌊xi⌋ = y(j,k). The integral part of the age of tokens
should agree with the natural number specified by the corresponding elements in w.

• If xi ≤ max and h(i) = (j, k) then frac(xi) = 0 iff j = 0. Tokens with zero fractional
parts correspond to elements in multiset b0.
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• If xi1 , xi2 < max , h(i1) = (j1, k1) and h(i2) = (j2, k2) then frac(xi1) < frac(xi2) iff
j1 < j2. This condition implies frac(xi1) = frac(xi2) iff j1 = j2. Thus, tokens with equal
fractional parts correspond to elements in the same multiset (unless they belong to bm+1).
Furthermore, the ordering among the multisets inside R reflects the ordering among the
fractional parts of the clock values (increasing from left to right).

We sometimes identify a region R with the set of markings [[R]] it represents (i.e., we write
R instead of [[R]]).

5.5

6.7

8.9

zero
frac.

increasing frac.

2.0

1.7

> max

,,

(5 : 7)

b c

(1 : 3)

a

(5 : 6)

(0, 1) (1 : 2) (1 : 3)

R S

Q

(a)

(b) (R, 2) (R, 1)(S, 5)
(S, 6)

Q

(3 : 5)

Figure 2: Marking M in (a) satisfies region R in (b).

Example 2.4. Consider the TPN N in Figure 1 with max = 7. Figure 2(a) shows a
marking M = [(R, 2.0) , (S, 5.5), (R, 1.7), (S, 6.7), (Q, 8.9)]. Figure 2(b) shows the unique
region R = ([(R, 2)], [(S, 5)] • [(R, 1), (S, 6)], [Q]) such that M ∈ [[R]]. (The symbol •
stands for concatenation.) In Figure 2(b), each circle corresponds to a multiset of tokens of
N with same fractional parts. Dotted lines show how the tokens of M in TPN correspond
to elements in the region R.

Equivalence and orders. The region construction defines an equivalence relation ≡ on
the set of markings such that M1 ≡ M2 if, for each region R, it is the case that M1 ∈ [[R]]
iff M2 ∈ [[R]].
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It is well-known [AD90] that ≡ is a time-abstract bisimulation on the set of markings.
In other words, if M1 −→ M2 and M1 ≡ M3 then there is an M4 such that M2 ≡ M4 and
M3 −→M4.

Notice that given a marking M , it is easy to compute the unique region RM satisfied
by M .

Next we define an order and a preorder on markings of TPN. First, there is the usual
order ≤ on multisets (markings are multisets of timed tokens). We have M1 ≤ M2 iff
∀p.M1(p) ≤M2(p), i.e., M1 can be obtained from M2 by removing some tokens.

The preorder � abstracts from the precise values of the ages of the tokens and considers
only their relation to each other. We define M1 �M2 if there is an M ′

2 with M1 ≡M ′
2 and

M ′
2 ≤M2. In other words, M1 �M2 if we can delete a number of tokens from M2 and as a

result obtain a new marking which is ≡ equivalent (but not necessarily = equivalent) to M1.
The relation � is only a preorder on the set of markings, because it is not antisymmetric.
However, it is an order on the equivalence classes w.r.t. ≡.

We let M1 ≺ M2 denote that M1 � M2 and M1 6≡ M2. Notice that −→ is monotonic
with respect to the preorder �, i.e, if M1 −→ M2 and M1 � M3 then there is an M4 such
that M2 �M4 and M3 −→M4.

Next we define a partial order � on the set of regions.

Definition 2.5. Let R = (b0, b1 . . . bm, bm+1) and R′ = (c0, c1 . . . cl, cl+1) be regions. Then,
R � R′ iff there is a strict monotone injection g : {0, . . . ,m+ 1} → {0, . . . , l + 1} with
g(0) = 0 and g(m + 1) = l + 1 and bi ≤ cg(i) for each i : 0 ≤ i ≤ m + 1. We let R ≺ R′

denote that R � R′ and R 6= R′.

The order � on regions agrees with the order � on markings.

Lemma 2.6. For regions R and R′, if R � R′ then for each M ∈ [[R]],M ′ ∈ [[R′]], we have
M �M ′.

Proof. Directly from Def. 2.3 and Def. 2.5.

Lemma 2.7. Given a TPN and a region R, the upward closure [[R]]↑ w.r.t. ≤ is the same as
the upward-closure w.r.t. �. Formally, [[R]]↑ := {M | ∃M ′ ∈ [[R]].M ′ ≤M} = {M | ∃M ′ ∈
[[R]].M ′ �M}

Proof. The ⊆ inclusion is trivial, since M ′ ≤M implies M ′ �M . To prove the ⊇ inclusion
let M ′ ∈ [[R]] and M ′ � M . Then, by definition of � there exists some marking M ′′ s.t.
M ′′ ≤M and M ′′ ≡ M ′. It follows from M ′ ∈ [[R]] and the definition of ≡ that M ′′ ∈ [[R]].
Thus M is also in the first set.

The following Lemma shows that the � preorder on regions of Def. 2.5 is compatible
with the � preorder on markings. Thus (sets of) regions can be used as a canonical rep-
resentation of upward-closed sets of markings, provided that they are closed under ≡. We
define the upward closure of a region w.r.t. � by R↑ := {R′ | R � R′} and generalize the
definition of the denotation from regions to sets of regions in the standard manner. So we
define [[R↑]] :=

⋃

R�R′ [[R′]].

Lemma 2.8. Consider a region R of a TPN and the preorder � on markings and regions
as defined in Def. 2.5. Then [[R]]↑ = [[R↑]].

Proof. If R is the empty region then the equivalence holds trivially. For the rest assume
that R is not empty. If M ∈ [[R]]↑ then there exists a marking M ′ ≤ M s.t. M ′ ∈ [[R]], by
Lemma 2.7. It follows that R = RM ′ � RM =: R′ and thus M ∈ [[R′]] ⊆ [[R↑]].
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If M ∈ [[R ↑]] then there exists some region R′ with R � R′ and M ∈ [[R′]]. Pick
some marking M ′ ∈ [[R]]. By Lemma 2.6 we get M ′ � M . Thus we obtain M ∈ [[R]]↑ by
Lemma 2.7.

One can symbolically represent certain upward-closed sets of markings as the upward
closures of finite sets of regions.

Definition 2.9. A Multi-region upward closure (MRUC) α is represented as a finite set of
regions α := {R1, . . . , Rn} where each Ri is a region. This represents an upward closed set
of markings [[α]] defined as follows.

[[α]] :=
⋃

i=1,...,n

[[Ri]]
↑

Note that, by Lemma 2.8, [[α]] =
⋃

i=1,...,n[[Ri ↑]].

Lemma 2.10. Multi-region upward closures (MRUCs) are effectively closed under union
and intersection.

Proof. The union operation is trivial, since for MRUC α, β we have [[α]] ∪ [[β]] = [[α ∪ β]].
For the intersection operation consider two MRUCs α := {A1, . . . , An} and β :=

{B1, . . . , Bm}. Then

[[α]] ∩ [[β]] =
⋃

1≤i≤n, 1≤j≤m

[[Ai]]
↑ ∩ [[Bj ]]

↑

Thus it suffices to show that for any two regions A,B one can construct a MRUC inter(A,B)
s.t. [[inter (A,B)]] = [[A]]↑ ∩ [[B]]↑. Given this, one can express the intersection as a new
MRUC ∪1≤i≤n,1≤j≤minter(Ai, Bj), since

[[α]] ∩ [[β]] =









⋃

1≤i≤n, 1≤j≤m

inter(Ai, Bj)









We construct the MRUC inter(A,B) for given regions A,B. Let A = (a0, a1a2 . . . an, amax )
and B = (b0, b1b2 . . . bm, bmax ).

Intuition: For the multisets a0, b0 and amax , bmax constructing the minimal requirements
for the intersection of their upward-closures is simple. It is just the maximum, i.e., the

multiset union (see Def. 2.1 for multisets), and we have a↑0 ∩ b
↑
0 = (a0 ∪ b0)

↑ (similarly for
amax , bmax ).

The sequences of multisets a1a2 . . . an and b1b2 . . . bm represent orderings of the frac-
tional parts of the ages of tokens in those multisets. However, the fractional part of a1 could
be smaller, equal to, or larger than the fractional part of b1, b2, etc. All of these cases must
be considered. If two multisets ai, bj represent the same fractional part, then the minimal
requirement for markings in the upward-closure of the intersection is the maximum, i.e., the
multiset union of ai and bj . Otherwise they must appear individually in the proper order
of the fractional parts.

Construction: Formally, let F be the set of all injective, strictly monotone increasing
functions f : {1, . . . , n} → {1, . . . , n +m} and G the set of all injective, strictly monotone
increasing functions g : {1, . . . ,m} → {1, . . . , n+m}. (Note that F and G are finite.) These
functions are normally not surjective and we define R(f) := f({1, . . . , n}) and R(g) :=
g({1, . . . ,m}). For any f ∈ F and g ∈ G we define a sequence of multisets

s(f, g) := c1c2 . . . cn+m
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such that for any i ∈ {1, . . . , n+m}

• If i ∈ R(f) ∩R(g) then ∃j, k. i = f(j) = g(k). Let ci := aj ∪ bk.
• If i ∈ R(f) and i /∈ R(g) then ∃j = f−1(i). Let ci := aj .
• If i /∈ R(f) and j ∈ R(g) then ∃k = g−1(i). Let ci := bk.
• Else ci := ∅.

For each f, g, the sequence of multisets s(f, g) describes a possible interleaving/combination
of the sequences a1 . . . an and b1 . . . bm. However, s(f, g) might contain some empty multi-
sets, which must be removed in order to satisfy the requirements for regions (see Def. 2.3).
Given a sequence of multisets x1 . . . xk, let e(x1 . . . xk) be the subsequence where all the
empty multisets have been removed.

We can now define the MRUC

inter(A,B) :=
⋃

f∈F, g∈G

{(a0 ∪ b0, e(s(f, g)), amax ∪ bmax )}

Proof of correctness: We show that this construction satisfies the required property
[[inter(A,B)]] = [[A]]↑ ∩ [[B]]↑.
Let M ∈ [[inter (A,B)]]. Then there exist f ∈ F, g ∈ G s.t. M ∈ [[(a0 ∪ b0, e(s(f, g)), amax ∪
bmax )]]↑. Since a1, . . . , an is a subsequence of e(s(f, g)) and a0 ⊆ a0 ∪ b0 and amax ⊆
amax ∪ bmax we get [[A]]↑ = [[(a0, a1a2 . . . an, amax )]]↑ ⊇ [[(a0 ∪ b0, e(s(f, g)), amax ∪ bmax )]]↑.
Therefore, M ∈ [[A]]↑. By a symmetric argument (with a and b interchanged) we obtain
M ∈ [[B]]↑. So finally we get M ∈ [[A]]↑ ∩ [[B]]↑.

Now we show the other inclusion. Let M ∈ [[A]]↑∩ [[B]]↑. There exist markings M1 ≤M
and M2 ≤ M with M1 ∈ [[A]] and M2 ∈ [[B]]. Since M1,M2 are markings, they are
multisets of (timed) tokens and we can define a new marking M ′ as their multiset union
(see Def. 2.1) by M ′ := M1 ∪M2 and obtain M ′ ≤ M . Now there exist functions f ∈ F
and g ∈ G, expressing the relative orders of the fractional parts in M1 and M2, s.t. M ′ ∈
[[(a0 ∪ b0, e(s(f, g)), amax ∪ bmax )]]. It follows that M ∈ [[(a0 ∪ b0, e(s(f, g)), amax ∪ bmax )]]↑

and thus M ∈ [[inter(A,B)]].

We define functions Pre and Post on sets of markings S such that Pre(S) and Post(S)
are the one-step predecessors and successors of markings in S, respectively. Formally,
Pre(S) := {M | ∃M ′ ∈ S.M −→ M ′} and Post(S) := {M | ∃M ′ ∈ S.M ′ −→ M}. By
replacing the transition relation with its reflexive-transitive closure we obtain the sets of all

predecessors and successors, respectively. Formally, Pre∗(S) := {M | ∃M ′ ∈ S.M
∗

−→M ′}

and Post∗(S) := {M | ∃M ′ ∈ S.M ′ ∗
−→M}.

The following lemmas show that for TPN and multi-region upward closures (MRUC)
S, one can effectively construct the sets Post(S), Pre(S) and Pre∗(S) as MRUC.

Lemma 2.11. ([ADMN04]) Let S be a set of markings which is represented as the upward-
closure of a finite set of regions, i.e., a MRUC. Then the set Post(S) is effectively con-
structible as a MRUC.

The construction for Pre∗(S) is done by the classic technique of successive construction
of Pre≤n(S) for larger and larger n (all of which are upward closed and representable by
MRUC) which eventually converges to Pre∗(S) by Higman’s Lemma [Hig52], because � is a
well-founded preordering on regions. (The correctness is implied by the compatibility of the
preorder � on regions with the order ≤ on markings, i.e., Lemma 2.7 and Lemma 2.8.) A
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proof can be found in [AJ98] and a more general result (for the more expressive formalism
of ‘existential zones’) has been shown in [AN01].

Lemma 2.12. Let S be a set of markings which is represented as the upward-closure of
a finite set of regions, i.e., a MRUC. Then the sets Pre(S) and Pre∗(S) are effectively
constructible as MRUC.

Finally, it is known that, for TPN, the set Post∗(S) cannot be effectively constructed in
any symbolic representation with a decidable membership problem, since the reachability
problem is undecidable [RGdFE99].

3. Zenoness

A zeno-computation of a timed Petri net is an infinite computation that has a finite delay.

Zenoness-Problem

Instance: A timed Petri net N , and a marking M of N .
Question: Is there an infinite M -computation π and a finite number m s.t. ∆(π) ≤ m ?

We consider a timed Petri net N . A marking M is called a zeno-marking of N iff the
answer to the above problem is ’yes’.
Note that the zeno-computation π can be either a disc-computation or a time-computation,
depending on whether the first transition is discrete or timed.

We let ZENO denote the set of all zeno-markings of N . More generally, we define

ZENOm := {M | ∃ an infinite computation π.M
π
→ ∧ ∆(π) ≤ m}

Thus ZENO =
⋃

m≥0 ZENOm.

The decidability of the zenoness-problem for timed Petri nets (i.e., the problem if M ∈
ZENO for a given marking M , or, more generally, constructing ZENO) was mentioned in
[dFERA00] by Escrig, et.al. as an open problem for both discrete and dense-timed Petri
nets. In this section, we show that for any TPN, a characterization of the set ZENO can
be effectively computed. We also show that this implies the computability of ZENO for
discrete-timed Petri nets.

The following outline explains the main steps of our proof.

Step 1: We translate the original timed Petri net N into an untimed simultaneous-
disjoint-transfer net N ′. Simultaneous-disjoint-transfer nets are a subclass of trans-
fer Petri nets [Hei82, FS01] where all transfers happen at the same time and do
not affect each other (i.e., all sources and targets of all transfers are disjoint). The
computations of N ′ represent, in a symbolic way, the computations of N that can
be performed in time less than 1 − δ for some predefined 0 < δ < 1.

Step 2: We consider the set INF of markings of N ′, from which an infinite compu-
tation is possible. INF is upward-closed and can therefore be characterized by the
finite set INFmin of its minimal elements. While INFmin is not computable for gen-
eral transfer nets [DJS99, May03], it is computable for simultaneous-disjoint-transfer
nets, as shown in Lemma 3.41.

Step 3: We re-interpret the set INF (resp. INFmin) of N ′ markings in the context
of the timed Petri net N and construct from it a characterization of the set ZENO,
described by a multi-region upward closure (MRUC) (see Def. 2.9).
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To simplify the presentation, we first show Step 1 and Step 3. Then, we show how to
perform Step 2.

3.1. Step 1: Translating TPNs to Simultaneous-Disjoint-Transfer Nets.
First we define simultaneous-disjoint-transfer nets.

Definition 3.1. Simultaneous-disjoint-transfer nets (short SD-TN) are a subclass of trans-
fer nets. A SD-TN N is described by a tuple (P, T, Input ,Output ,Trans) where

• P is a set of places,
• T is a set of ordinary transitions,
• Input ,Output : T → 2P are functions that describe the input and output places of every

transition, respectively (as in ordinary Petri nets), and
• Trans describes the simultaneous and disjoint transfer transition. In order to emphasize

the simultaneous operation of the transfers, we define Trans as a single transition with
many effects, rather than as a set of transitions. We have Trans = (I,O,ST ) where
I ⊆ P , O ⊆ P , and ST ⊆ P × P . Trans consists of two parts: (a) I and O describe the
input and output places of the Petri net transition part; (b) the pairs in ST describe the
source and target places of the transfer part. Furthermore, the following restrictions on
Trans must be satisfied:
- If (sr, tg), (sr′, tg′) ∈ ST then sr, sr′, tg, tg′ are all different and {sr, tg} ∩ (I ∪O) = ∅.

Let M : P → N be a marking of N . We use ≤ as the ordering on the set of markings
(Section 2). The firing of normal transitions t ∈ T is defined just as for ordinary Petri nets.
A transition t ∈ T is enabled at marking M iff ∀p ∈ Input(t).M(p) ≥ 1. Firing t yields the
new marking M ′ where

M ′(p) = M(p) if p ∈ Input(t) ∩ Output(t)
M ′(p) = M(p) − 1 if p ∈ Input(t) − Output(t)
M ′(p) = M(p) + 1 if p ∈ Output(t) − Input(t)
M ′(p) = M(p) otherwise

The transfer transition Trans is enabled at M iff ∀p ∈ I.M(p) ≥ 1. Firing Trans yields the
new marking M ′ where

M ′(p) = M(p) if p ∈ I ∩O
M ′(p) = M(p) − 1 if p ∈ I −O
M ′(p) = M(p) + 1 if p ∈ O − I
M ′(p) = 0 if ∃p′. (p, p′) ∈ ST
M ′(p) = M(p) +M(p′) if (p′, p) ∈ ST
M ′(p) = M(p) otherwise

The restrictions above ensure that these cases are disjoint. Note that after firing Trans all
source places of transfers are empty, since, by the restrictions defined above, no place is
both source and target of a transfer.

We use M −→M ′ to denote that M ′ is reached from M either by executing an ordinary
Petri net transition t ∈ T ′ or the transfer transition Trans .

In the following, sometimes we use transfer transition to mean simultaneous-disjoint
transfer transitions.
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3.1.1. Construction of SD-TN from a TPN. For a given TPN N = (P, T, In,Out) we con-
struct a SD-TN N ′ = (P ′, T ′, Input ,Output ,Trans). The intuition is that N ′ simulates
symbolically all computations of N which can happen in time < 1 − δ for some predefined
1 > δ > 0. First we show how to construct the places of SD-TN. Then we show how to
simulate a discrete transition of N by a set of transitions of N ′. Finally, we show how
to simulate timed transitions of N by simultaneous-disjoint-transfers and a set of normal
discrete transitions as in ordinary PNs.

We let max be the maximal finite constant that appears in the arcs of the TPN. We
define a finite set of symbols Sym := {k | k ∈ N, 0 ≤ k ≤ max} ∪ {k + | k ∈ N, 0 ≤ k ≤
max}∪{k− | k ∈ N, 1 ≤ k ≤ max} and a total order on Sym by k < k+ < (k+1)− < (k+1)
for every k.

3.1.2. Constructing places of SD-TN. We let P ′ = {p(sym) | p ∈ P, sym ∈ Sym}, i.e.,
for every place p ∈ P of N we have a set containing places of the form p(sym) such that
sym ∈ Sym. The set P ′ is finite, since both P and sym are finite.

A token in place p(k) encodes a token of age exactly k on place p. A token in p(k+)
encodes a token in place p of an age x which satisfies k < x ≤ k + δ for some a-priori
defined 0 < δ < 1. This means that the age of this token cannot reach k + 1 in any
computation taking time < 1 − δ. A token in p(k−) encodes a token in p whose age x
satisfies k − 1 + δ < x < k and which may or may not reach age k during a computation
taking time 1 − δ. For instance, given δ = 0.6, a TPN token (p, 1.5) is encoded as p(1+)
while another TPN token (p, 2.7) is encoded as p(3−). The SD-TN tokens p(k), p(k+) and
p(k−) are called symbolic encodings of the corresponding TPN token (p, a).

In particular, the age of a p(k−) token could be chosen arbitrarily close to k, such that
its age could reach (or even exceed) k in computations taking an arbitrarily small time.

3.1.3. Translating Discrete Transitions. First we define a function enc : Intrv → 2Sym as
follows.

enc([x : y]) := {sym ∈ Sym | x ≤ sym ≤ y}
enc((x : y]) := {sym ∈ Sym | x < sym ≤ y}
enc([x : y)) := {sym ∈ Sym | x ≤ sym < y}
enc((x : y)) := {sym ∈ Sym | x < sym < y}

For instance, enc([1 : 2]) = {1, 1+, 2−, 2} and enc([1 : 2)) = {1, 1+, 2−}. We say that
enc(I) is the encoding of interval I. By the definition above, the bound ∞ is encoded as
max+, i.e., enc([1 : ∞)) = {1, 1+, 2−, 2, . . . ,max ,max+}.

For every transition t ∈ T in the TPN N , we have a set T ′(t) of new transitions in N ′.
The intuition is that the transitions in T ′(t) encode all possibilities of the age intervals of
input and output tokens.

Example 3.2. Consider the TPN in Figure 3, part 1. The only (discrete) transition t has
an input arc from place p labeled [0 : 1] and two output arcs both labeled [0 : 0] to places p
and q, respectively. The translation of this transition into its corresponding SD-TN would
yield 4 different transitions in T ′(t) with output arcs to both places p(0) and q(0), and input
arcs from places p(0), p(0+), p(1−) or p(1), respectively, as shown in Figure 3, parts 2.(a),
2.(b), 2.(c), and 2.(d).
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2.(a)

[0 : 0]

1.

[0 : 1]

2.(b)

[0 : 0]

t

q(0)q

p p(0) p(1)

2.(d)2.(c)

p(0+) p(1−)

Figure 3: Simulating (1) t in TPN by (2) a set T ′(t) consisting of 4 transitions in 2.(a),
2.(b), 2.(c) and 2.(d).

Example 3.3. Consider the TPN in Figure 4, part 1. The only (discrete) transition t has
an input arc from place p as in Figure 3, part 1., but the output arc to place q is labeled by
the interval [0 : 1]. This will yield the 16 different transitions in T ′(t), shown in Figure 4,
part 2., since enc([0 : 1]) = {0, 0+, 1−, 1}.

Each transition t of TPN N yields a set T ′(t) of transitions in the corresponding SD-TN
N ′. Each transition in the set T ′(t) is of the form t′(A,B) where A and B are the set of input
and output places of t′(A,B) respectively, i.e., Input(t′(A,B)) = A and Output(t′(A,B)) =
B. In the following, for each transition t in TPN, we compute a set Pin(t) (Pout (t)) which
contains the set of input (output) places for each transition in T ′(t).

For every t ∈ T , consider the set of input arcs Ain(t) = {p1(I1), . . . , pm(Im)} and the

set of output arcs Aout(t) = {p′1(J1), . . . , p
′
ℓ(Jℓ)}. Now, we define Pin(t) ⊆ 2P ′

where each
element in Pin(t) is a set A of places and is given by

A = {p1(sym1), . . . , pm(symm)}

where sym i ∈ enc(Ii) for i : 1 ≤ i ≤ m. Intuitively, each set A in Pin(t) corresponds to a
unique combination of encodings of input tokens of t in N .

For every t ∈ T we define Pout (t) ⊆ 2P ′
in a similar manner. We define Pout (t) where

each element in Pout (t) is a set B of places and is given by

B =
{

p′1(sym
′
1), . . . , p

′
ℓ(sym

′
ℓ)

}

where sym ′
i ∈ enc(Ji) for i : 1 ≤ i ≤ ℓ. Similarly, each set B in Pout (t) corresponds to a

unique combination of encodings of output tokens of t in N .
We define T ′(t) := {t′(A,B) | A ∈ Pin(t), B ∈ Pout (t)} and finally T ′ :=

⋃

t∈T T
′(t).

Example 3.4. Consider the example in Figure 3. Here, In(t , p) = [0 : 1 ], Out(t , p) = [0 :
0 ], In(t , q) = ∅ and Out(t , q) = [0 : 0 ]. We have enc([0 : 1]) = {0, 0+, 1−, 1} and enc([0 :
0]) = {0}. Then Pin(t) = {{p(0)} , {p(0+)} , {p(1−)} , {p(1)}} and Pout (t) = {{q(0)}}.
The four transitions in Figure 3.2 are given by t′({p(0)} , {q(0)}), t′({p(0+)} , {q(0)}),
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[0 : 1]

q(0) q(0) q(0)

p(1)

1.

2.

p(0) p(1)

p(1)

q(1)

p(0)

q(1) q(1) q(1)

p(1)p(0)

q(0)

[0 : 1]
t

q

p(0+)

q(0+) q(0+) q(0+) q(0+)

p(1−)

q(1−) q(1−) q(1−)

p(0+) p(0+)

q(1−)

p(1−) p(1−)

p p(0) p(0+) p(1−)

Figure 4: Simulating (1) t in TPN by (2) a set T ′(t) consisting of 16 transitions. (For
readability, these 16 transitions are listed individually, rather than in a combined
net.)

t′({p(1−)} , {q(0)}) and t′({p(1)} , {q(0)}), respectively. T ′(t) consists of the above four
transitions.

3.1.4. Translating Timed Transitions. So far, the transitions in T ′ only encode the discrete
transitions of N . The passing of time will be encoded by a sequence of transitions, including
one use of the transfer transition. Our construction must ensure the following properties.

• We need to keep discrete transitions and time-passing separate. Therefore, we must first
modify the net to obtain alternating discrete phases and time-passing phases.

• Time-passing phases must not directly follow each other. They must be separated by at
least one discrete transition.

Our SD-TN is extended and modified in several steps.

(1) First we add three extra places pdisc , ptime1 and ptime2 to P ′ which act as control-states
for the different phases. (The time-passing phase has two sub-phases). The construction
will ensure that at any time there is exactly one token on exactly one of these places.

(2) Normal transitions can fire if and only if pdisc is marked. Thus we modify all transitions
t ∈ T ′ by adding pdisc to Input(t) and Output(t).

(3) We add an extra place pcount to P ′ which counts the number of fired discrete transitions
since the last time-passing phase. Thus we modify all transitions t ∈ T ′ by adding
pcount to Output(t). This is needed to ensure that time-passing phases are separated
by at least one discrete transition. A new time-passing phase can only start if pcount is
non-empty, and pcount will be cleared of tokens during the time-passing phase.
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(4) Now we add a new transition tswitch−time which starts the time-passing phase. We define
Input(tswitch−time) = {pdisc , pcount} and Output(tswitch−time) = {ptime1}. It can only fire
if pcount is marked (thus time-passing phases cannot directly follow each other) and
moves the control-token from pdisc to ptime1 . (Note that pcount is not necessarily empty
after this operation, since it might have contained more than one token. The place
pcount will be cleared later by the transfer transition.)

(5) If the control-token is on ptime1 then the transfer transition Trans is the only enabled
transition. It encodes (in an abstract way) the effect of the passing time on the ages of
tokens. After an arbitrarily small amount of time < 1 passes, all tokens of age k have
an age > k. This is encoded by the simultaneous-disjoint transfer arc, which moves all
tokens from places p(k) to places p(k+). Furthermore, it will move the control-token
from place ptime1 to place ptime2 . Finally, it needs to clear the place pcount of tokens. To
do this, we add a new special place pdump (which is not an input place of any transition;
the number of tokens on pdump is semantically irrelevant) and transfer all tokens from
pcount to pdump . Formally, Trans := (I,O,ST ) where I := {ptime1}, O := {ptime2},
and ST := {(p(k), p(k+)) | 0 ≤ k ≤ max} ∪ {(pcount , pdump)}. Note that the transfer
transition Trans is enabled even if no tokens are present on the places p(k).

(6) Now the control-token is on place ptime2 . Next we add two new sets of transitions to
T ′, which encode what happens to tokens of age k− when (a small amount < 1 of) time
passes. Their age might either stay below k, reach k or exceed k. Notice that we do
not need to do anything in the first case.
• For every k ∈ {1, . . . ,max} we have a transition with input places ptime2 and p(k−)

and output places ptime2 and p(k). This encodes the second scenario.
• Furthermore, for every k ∈ {1, . . . ,max} we have a transition with input places ptime2

and p(k−) and output places ptime2 and p(k+). This encodes the third scenario.
(7) Finally, we add an extra transition tswitch−disc with input place ptime2 and output place

pdisc, which switches the net back to normal discrete mode.

Note that after a time-passing phase the only tokens on places p(k) are those which came
from p(k−), because all tokens on p(k) were first transferred to p(k+) by the transfer
transition. Furthermore, the place pcount is empty after a time-passing phase, and thus
tswitch−time is not immediately enabled. At least one discrete transition must fire before
the next time-passing phase. Therefore, every infinite computation of the SD-TN N ′ must
contain infinitely many discrete transitions.

Convention: Since the number of tokens on place pdump is semantically irrelevant, we will
ignore this place in the rest of our proof. It was only introduced for technical reasons to
empty pcount by the transfer, since we do not have reset-arcs, but only a transfer arc.

Example 3.5. In Figure 5, we simulate the timed transitions of a TPN with a single place
p and max = 1. The transition tswitch−time starts the time-passing phase by moving the
token from pdisc to ptime1 and consumes one token from pcount (thus it cannot fire if pcount

is empty). The transfer transition is described by the dotted line and the transfer arcs are
shown as thick arrows from the source of the transfer to the target of the transfer, namely
from p(0) to p(0+) and from p(1) to p(1+). The place pcount is cleared by moving all its
tokens to the (otherwise unused) place pdump . The Petri net part of a transfer (input from
ptime1 and output to ptime2 ) is shown as ordinary arcs. The transitions t1 and t2 move a
token from p(1−) to p(1) and to p(1+), respectively, if there is a token in ptime2 . Finally,
tswitch−disc moves the token from ptime2 back to pdisc and ends the time-passing phase.
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t2

t1

p(1−)

Trans

pdisc

tswitch−time tswitch−disc

pdump

p(1+)

ptime2

p(0) p(0+)

pcount

p(1)

ptime1

Figure 5: Simulating a time-passing transition in a TPN for time < 1 − δ, by the corre-
sponding SD-TN.

3.2. Step 3: Constructing ZENO. In this section, we show how to compute the set
ZENO as a MRUC.

Definition 3.6. LetN be a TPN andN ′ = (P ′, T ′, Input ,Output ,Trans) the corresponding
SD-TN, defined as in Subsection 3.1.

• We say that a marking M ′ of N ′ is a standard marking if M ′(pdisc) = 1 and M ′(ptime1 ) =
M ′(ptime2 ) = 0 and M ′(pcount ) = 0. (It follows that a computation from a standard
marking cannot start directly with a time-passing phase.) Let Ω be the set of all markings
of N ′ and Ω′ the set of all standard markings of N ′.

• We denote by INF the set of all markings of N ′ from which infinite computations start.
Since INF is upward-closed in Ω with respect to ≤ and ≤ is a well-quasi-ordering, INF
can be characterized by its finitely many minimal elements (see also Lemma 3.18). Let
INFmin be the set of minimal elements (markings).

• Let INF ′ and INF ′
min be the restriction to standard markings of INF and INFmin , re-

spectively. I.e., INF ′ := INF ∩ Ω′ and INF ′
min := INFmin ∩ Ω′. The set INF ′ is not

upward-closed in Ω. However, by the following Lemma 3.7, INF ′ is the upward-closure
of INF ′

min in Ω′. Thus INF ′ can be characterized by the finite set INF ′
min of its minimal

elements.

Lemma 3.7. INF ′ is the upward-closure of INF ′
min in Ω′.

Proof. Let X := {M ′ ∈ Ω′ | ∃M ∈ INF ′
min .M

′ ≥ M} be the upward-closure of INF ′
min in

Ω′. We need to show that INF ′ = X.
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The inclusion X ⊆ INF ′ holds trivially, by monotonicity of SD-TN and the fact that
all markings in X are standard markings.

Now we show the other inclusion INF ′ ⊆ X. Let M ′ ∈ INF ′ = INF ∩ Ω′. Since
M ′ ∈ INF , there exists some marking M ∈ INFmin such that M ≤M ′. Since M ∈ INF , it
follows from the definition of INF and the construction of the SD-TN N ′ that M(pdisc) +
M(ptime1 )+M(ptime2 ) ≥ 1, i.e., at least one of these places must be marked or there cannot
be an infinite run. Since M ′ ∈ Ω′ we have M ′(pdisc) = 1 and M ′(ptime1 ) = M ′(ptime2 ) =
M ′(pcount ) = 0. Therefore, by M ≤ M ′, we have that M(pdisc) = 1 and M(ptime1 ) =
M(ptime2 ) = M(pcount ) = 0 and thus M ∈ Ω′. So we obtain M ∈ INFmin ∩ Ω′ = INF ′

min .
Since M ′ ∈ Ω′ is a standard marking and M ′ ≥M , we finally obtain M ′ ∈ X as required.

The following definitions establish the connection between the markings of the timed
Petri net N and the markings of the SD-TN N ′.

Definition 3.8. For every δ with 0 < δ < 1 we define a function intδ : (P × R
≥0)

⊙
→ (P ′ →

N) that maps a marking M of N to its corresponding marking M ′ in N ′. M ′ := intδ(M) is
defined as follows. Let

M ′(p(k)) := M((p, k)) for k ∈ N, 0 ≤ k ≤ max .
M ′(p(k+)) :=

∑

k<x≤k+δM((p, x)) for k ∈ N, 0 ≤ k ≤ max − 1.

M ′(p(max+)) :=
∑

max<xM((p, x))
M ′(p((k + 1)−)) :=

∑

k+δ<x<k+1M((p, x)) for k ∈ N, 0 ≤ k ≤ max − 1.
M ′(pdisc) := 1
M ′(ptime1 ) := 0
M ′(ptime2 ) := 0
M ′(pcount ) := 0

Note that M ′ = intδ(M) is a standard marking according to Def. 3.6.

For instance, for a TPN marking M = [(p, 1), (p, 0.5), (p, 0.95), (p, 1.9), (p, 2.1), (p, 3.9)] and
max = 2, δ = 0.8 we obtain intδ(M) = [p(1), p(0+), p(1−), p(2−), p(max +), p(max+), pdisc ].

The intuition is as follows. In an infinite computation π starting atM with ∆(π) < 1−δ,
no TPN token (p, x) with k < x ≤ k+δ can reach age k+1 by aging. This is reflected in N ′

by the fact that p(k+) tokens are not affected during the time-passing phase. On the other
hand, TPN tokens (p, x) with k + δ < x < k + 1 can reach an age ≥ k + 1 by aging. This
is reflected in N ′ by the fact that p((k + 1)−) tokens can become p(k + 1) or p((k + 1)+)
tokens during the time-passing phase.

The following lemma establishes a correspondence between fast disc-computations of
the TPN (i.e., starting with a discrete transition; see Section 2) and computations of the
SD-TN.

Lemma 3.9. Consider a TPN N with marking M0, the corresponding SD-TN N ′ con-
structed as above, and 0 < δ < 1. If there exists an infinite M0-disc-computation π
such that ∆(π) < 1 − δ then there exists an infinite intδ(M0)-computation π′ in N ′, i.e.,
intδ(M0) ∈ INF ′.
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Proof. We show that for every infinite M0-disc-computation π of the form

M0 −→D M1
0 −→D M2

0 −→D . . .Mn0

0
−→x0

M1 −→D M1
1 −→D M2

1 −→D . . .Mn1

1
−→x1

M2 . . .

with ni ≥ 1 and ∆(π) < 1 − δ, there is a corresponding infinite computation in N ′ of the
form

intδ0(M0) −→ intδ0(M
1
0 )+{pcount} −→ intδ0(M

2
0 )+{p2

count} −→ . . . intδ0(M
n0

0 )+{pn0

count}
∗

−→
intδ1(M1) −→ intδ1(M

1
1 )+{pcount} −→ intδ1(M

2
1 )+{p2

count} −→ . . . intδ1(M
n1

1 )+{pn1

count}
∗

−→
intδ2(M2) . . .

with δ0 = δ and for all i, 1 > δi+1 > δi. Let πi be the infinite suffix of π starting at Mi. The
values of δi will be defined such that ∆(πi) < 1 − δi. (The condition δi+1 > δi is required,
because ∆(πi+1) < ∆(πi).)

For every discrete transition step M j
i −→D M j+1

i there exists a transition step in N ′

of the form intδi
(M j

i ) + {pj
count} →dt intδi

(M j+1
i ) + {pj+1

count}, where dt ∈ T ′(t) by the
construction in Section 3.1.1 and Def. 3.8. Note that the functions intδi

always return
standard markings (with no tokens on place pcount ). However, in the computation of the
SD-TN, the number of tokens on pcount represents the number of steps since the last time-
passing phase.

For every timed transition step Mni

i −→xi
Mi+1 we have δi+1 = δi + xi ≤ 1. By

the construction in Section 3.1.1 and Def. 3.8 there is a sequence of transitions in N ′ (the

encoding of the time-passing phase) of the form intδi
(Mni

i ) + {pni

count}
∗

−→ intδi+1
(Mi+1).

The time-passing phase can start at intδi
(Mni

i ) + {pni

count}, because ni ≥ 1, i.e., there
is at least one token on place pcount . Note in particular that if some token (p, x) with
k + δi < x < k + 1 reaches an age equal to (or greater than) k + 1 in the transition from
Mni

i to Mi+1 then its encoding p((k + 1)−) can be transformed into a token p(k + 1) or
p((k+1)+) in the time-passing phase of N ′. Furthermore, all tokens in Mni

i with fractional
part 0 are transformed into tokens with a strictly positive fractional part in Mi+1, since
xi > 0. In N ′ this is encoded by the fact that all p(k) tokens become p(k+) tokens in the
time-passing phase. Finally, all tokens are removed from pcount in the time-passing phase.
Thus the resulting marking intδi+1

(Mi+1) is a standard marking again.

The reverse implication of Lemma 3.9 does not generally hold. The fact that intδ(M) ∈
INF ′ for some marking M of a TPN N does not imply that there is an infinite M -
computation in the corresponding TPN. The infinite intδ(M)-computation in N ′ depends
on the fact that the p(k−) tokens do (or don’t) become p(k) or p(k+) tokens at the right
step in the computation. For example, in an infinite computation taking time 0.5, two
different TPN tokens (p, 0.8) and (p, 0.9) are both interpreted as p(1−) in N ′. However,
(p, 0.8) cannot become (p, 1) by aging unless (p, 0.9) becomes (p, 1.1), while their symbolic
encodings p(1−) can become p(1) or p(1+) in any order.

To establish a reverse correspondence between markings of N ′ and markings of N we
need the following definitions.
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Definition 3.10. Consider a TPN N = (P, T, In,Out). Let N ′ be the corresponding SD-
TN with places P ′ = {p(sym) | p ∈ P, sym ∈ Sym} ∪ {pdisc , ptime1 , ptime2 , pcount} and a
standard marking M ′ : P ′ → N. Let M ′−,M ′+ be the sub-markings of M ′ defined as
follows.

• M ′−(p(k−)) = M ′(p(k−)) for each place of the form p(k−) in P ′; M ′−(p(k+)) = 0 and
M ′−(p(k)) = 0 for each place of the form p(k+) and p(k) in P ′, respectively. M ′−(px) = 0
for any px ∈ {pdisc , ptime1 , ptime2 , pcount}.

• M ′+(p(k+)) = M ′(p(k+)) for each place of the form p(k+) in P ′. But M ′+(p(k−)) =
0 and M ′+(p(k)) = 0 for each place of the form p(k−) and p(k) in P ′, respectively.
M ′+(px) = 0 for any px ∈ {pdisc , ptime1 , ptime2 , pcount}.

Let perm(M ′−) be the set of all words

w− = b1 • . . . • bn ∈
(

(P × {0, . . . ,max − 1})⊙ − {∅}
)∗

such that for all p and k < max we have that M ′−(p((k+1)−)) = b1((p, k))+. . .+bn((p, k)).
Similarly, let perm(M ′+) be the set of all words

w+ = b1 • . . . • bn ∈
(

(P × {0, . . . ,max − 1})⊙ − {∅}
)∗

such that for all p and k < max , we have M ′+(p((k)+)) = b1((p, k)) + . . .+ bn((p, k)).

Intuitively, perm(M ′−) describes all possible permutations of the fractional parts of (the
ages of) tokens in a TPN marking M which are symbolically encoded as p(k−) tokens in the
corresponding SD-TN standard marking M ′. Note that several different tokens can have
the same fractional part. Similarly, the set perm(M ′+) describes all possible permutations
of the fractional parts of (the ages of) tokens in a TPN marking M which are symbolically
encoded as p(k+) tokens in the corresponding SD-TN standard marking M ′.

Example 3.11. Let max = 1. Consider M ′ = [pdisc , p(1), q(1+), p(0+), q(1−), q(1−)].
Then perm(M ′−) = {[(q, 0)] • [(q, 0)] , [(q, 0), (q, 0)]} and perm(M ′+) = {[(p, 0)]}. Notice
that q(1+) does not belong to perm(M ′+), since max = 1.

Every standard marking M ′ of the SD-TN defines a set of TPN markings, depending
on which permutation of the fractional parts of the ages of the p(k−)-encoded tokens and
p(k+)-encoded tokens is chosen.

Definition 3.12. Let N ′ be a SD-TN. For every standard marking M ′ : P ′ → N we define
a multi-region upward closure (MRUC) Reg(M ′) as follows. The MRUC Reg(M ′) contains
all regions Reg(M ′, w+, w−) of the form (b0, w+ • w−, bmax ), where b0((p, k)) = M ′(p(k))
for all p and all k ≤ max , w+ ∈ perm(M ′+), w− ∈ perm(M ′−) and bmax (p) = M ′(p(max+))
for all p.

Example 3.13. ConsiderM ′ =[pdisc , p(1), q(1+), p(0+), q(1−), q(1−)] and sets perm(M ′+),
perm(M ′−) of Example 3.11. Reg(M ′) consists of the 2 regions shown in Figure 6.

Next we show how an infinite disc-computation of the SD-TN corresponds to a zeno
computation in the TPN which starts with a discrete transition.

Lemma 3.14. Let N be a TPN with corresponding SD-TN N ′ and M ′ ∈ INF ′. Then

∃w− ∈ perm(M ′−).∀w+ ∈ perm(M ′+). [[Reg(M ′, w+, w−)]]↑ ⊆
⋃

δ>0

ZENO1−δ ⊆ ZENO
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R1 = p(0)p(1) q(0) q(0)

p(1) p(0)
q(0)

q(0)
q

w+b0

q

R2 =

w− bmax

Figure 6: Reg(M ′) = {R1, R2}

Proof. Since M ′ ∈ INF ′, there is an infinite M ′-computation π′ = M ′ →M ′
1 →M ′

2 → . . . .
The first transition in π′ is a discrete transition, since M ′ is a standard marking. The
computation π′ contains a (possibly infinite) number of time-passing phases (where the
control-token shifts to the place ptime1 and then ptime2 ) tpp1, tpp2, . . . . Now consider the
original p(k−) tokens in M ′ which become p(k) tokens or p(k+) tokens in the i-th time-
passing phase tppi. Other tokens which were newly created during the computation π′ are
not considered here. (They will be treated differently; see below). Let αi be the multiset
of p(k−) tokens in M ′ which become p(k+) tokens in tppi and βi the multiset of p(k−)
tokens in M ′ which become p(k) tokens in tppi. (Note that this does not happen by the
transfer transition, but by normal transitions in second part of the time-passing phase,
where the control-token is on place ptime2 .) We have αi, βi ≤ M ′−, but not necessarily
Σi∈N(αi + βi) = M ′−, because p(k−) tokens can also be used by normal transitions in the
discrete phase or never become p(k) or p(k+) tokens at all. Let γ := M ′− − Σi∈N(αi + βi).
Since M ′− is finite, there exists a smallest number m such that αi +βi = ∅ for all i > m. It
follows that there exists an infinite suffix π′′ of π′ such that in π′′ no original p(k−) token
of M ′ becomes a p(k) or p(k+) token.

We define w− ∈ perm(M ′−) by w− := γ • βm • αm • · · · • β1 • α1.
We need to prove that

∀w+ ∈ perm(M ′+). [[Reg(M ′, w+, w−)]]↑ ⊆
⋃

δ>0

ZENO1−δ

For this it suffices to show that [[Reg(M ′, w+, w−)]] ⊆
⋃

δ>0 ZENO1−δ, because ZENO1−δ

is upward-closed. Now let w+ ∈ perm(M ′+) and let M ∈ [[Reg(M ′, w+, w−)]]. We need to
show that M ∈ ZENO1−δ for some δ > 0, i.e., that there exists an infinite M -computation
π with ∆(π) < 1 − δ.

Since M ∈ [[Reg(M ′, w+, w−)]] there exists a δ with 0 < δ < 1 and intδ(M) = M ′. By
our assumption above, M ′ ∈ INF ′ is a standard marking where an infinite computation
π′ starts. The computation π′ begins with a normal transition (not a time-passing phase),
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since M ′ is a standard marking. Based on this π′, we now construct an infinite M -disc-
computation π with ∆(π) < 1 − δ.

A crucial feature of the construction of this particular M -disc-computation π is the
order of the fractional parts of the ages of tokens. While this order is given for the tokens
already present in M , it can be chosen conveniently (i.e., as needed) for those tokens which
are newly created during π. The main ideas for this construction are the following:

• Since ∆(π) < 1, for any token it can happen at most once during π that it reaches the next
higher integer age by aging. In particular, initially present tokens which are interpreted
as p(k−) may age to p(k) or p(k+), but not to p((k + 1)−) or higher during π.

• All time intervals on transition arcs in the timed Petri net have integer bounds (see
Section 2). Thus one can have intervals like (1 : 4] or [2 : 7), but not [1.3 : 2.1]. This
means that if a token is newly created during π then the fractional part of its age can be
chosen nondeterministically arbitrarily closely to the next higher integer. For example,
if a token is created by an output arc labeled [1 : 2) then its age could be 1.7, 1.9, 1.99,
or 1.99999, etc. Consider an already existing token with an age whose fractional part
is a nonzero value x. Now another token is newly created, and let y be the fractional
part of its age. Then all cases y < x, y > x and y = x are possible, e.g., y = x/2 or
y = x+(1−x)/2, or y = x. This means that the newly created token could reach the next
higher integer age before, after, or at the same time as the old token, depending on which
value y is chosen. For each of these scenarios there is a computation in with the fractional
part y is chosen to implement it. In general, for any permutation of the orders of the
fractional parts of the ages of newly created tokens (w.r.t. already existing tokens and
each other), there is some computation in which their ages are chosen to create this order.
Of course, this only applies to tokens which exist at the same time in the net during the
computation π, not those who are created (directly or indirectly) by each other.

The computation π has the formM −→D Mj1 →Mj2 → . . . where the sequence {ji}i∈N

is a subsequence of 1, 2, . . . (it skips the intermediate steps in the time-passing phases of
π′) and M ′

ji
= intδji

(Mji
) + {pn

count} (for some n ≥ 0) and δji
= δ + ∆(M −→ Mj1 −→

Mj2 −→ . . . −→Mji
). (The first transition in π is a discrete transition, since also the first

transition in π′ is one.)
For every simulation of a discrete transition of N in π′ (i.e., not in the time-passing

phase) of the form M ′
i → M ′

i+1 where M ′
i = intδi

(Mi) + {pn
count} (for some n ≥ 0) there

is a corresponding discrete transition in π of the form Mi −→D Mi+1 where δi+1 = δi and
M ′

i+1 = intδi+1
(Mi+1) + {pn+1

count}. This follows directly from Def. 3.1. (Note that the extra

parts with {pn
count} and {pn+1

count} are necessary. For technical reasons, the SD-TN counts the
number of discrete transitions since the last time-passing phase, while the functions intδi

always return standard markings without tokens on pcount .)
Now we consider the i′-th time-passing phase for 1 ≤ i′ ≤ m. (Recall the definition

above that m is the index number of the last time-passing phase where original p(k−) tokens
of M ′ change into p(k) or p(k+) tokens. The remaining case of i′ > m will be considered

later.) For every sequence of transitions M ′
i

∗
−→M ′

l in π′ representing the i′-th time-passing
phase there is a corresponding single time-transition in π of the form Mi −→εi′

Ml, where
M ′

i = intδi
(Mi) + {pn

count} (for some n ≥ 1), δl = δi + εi′ and M ′
l = intδl

(Ml). (Note
that M ′

i must contain at least one token on pcount for the time-passing phase to start there
and thus n ≥ 1. On the other hand, M ′

l is a standard marking, since it is reached at
the end of a time-passing phase and thus does not contain any tokens on pcount .) The
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delay εi′ is chosen as εi′ := 1 − fi′ where fi′ is the fractional part of the age of those
tokens in Mi which are mapped to βi′ by intδi

. This ensures that in this timed transition
the right tokens (of those originally present in M) reach (those mapped to βi′) or exceed
(those mapped to αi′) the next higher integer age. For the other tokens of Mi, which were
newly created during π we can arbitrarily choose the values of their fractional parts, i.e.,
for every combination of these values there is a possible computation which implements it.
Thus one can assume that these fractional parts are conveniently chosen such that they do
(or don’t) reach (or exceed) the next higher integer age, just as required by the condition
intδl

(Ml) = M ′
l . Since intδ(M) = M ′, only those tokens in M with a fractional part > δ

were mapped to p(k−) tokens in M ′ and only those tokens can reach (or exceed) age k in
π. Therefore it follows from our choice of the εi′ for i′ ≤ m that

∑m
i′=1 εi′ < 1 − δ. Thus

we get λ := (1 − δ) −
∑m

i′=1 εi′ > 0. (The quantity λ will be used to determine the εi′ for
i′ > m.)

Now we consider the i′-th time-passing phase for i′ > m. These are the time-passing
phases in the infinite suffix π′′ of π′ mentioned above. For them, it works like the case
above, except that the delays εi′ do no longer depend on the initial marking M , because
αi′ + βi′ = ∅ for i′ > m. As shown above, none of the original tokens of M are involved
in these i′-th time-passing phases for i′ > m. The only tokens involved in this (reaching
or exceeding the next higher integer age in this phase) are tokens newly generated in π
(which have an age greater than δ and are mapped to p(k−)). As explained above, the
fractional parts of their ages can be chosen conveniently (i.e., as needed) such that they
reach or exceed the next higher integer age exactly as required for the correspondence with
the computation π′. In particular, their ages can be chosen arbitrarily close to the next
higher integer age such that the required delays εi′ (for i′ > m) can be made arbitrarily

small. We choose εi′ := (λ/2) ∗ 2−i′ for i′ > m.
So we obtain ∆(π) =

∑

i′∈N
εi′ =

∑

1≤i′≤m εi′ +
∑

i′>m εi′ ≤
∑

1≤i′≤m εi′ + λ/2 <
∑

1≤i′≤m εi′ + λ = 1 − δ. Thus ∆(π) < 1 − δ and M ∈ ZENO1−δ , as required.

Now we describe the algorithm to compute the set ZENO as a multi-region upward
closure. The algorithm computes a MRUC Z, given by Definition 3.15, and we prove in
Lemma 3.16 and Lemma 3.17 that [[Z]] = ZENO.

Definition 3.15. Let N be a TPN with corresponding SD-TN N ′.

Z :=
⋃

M ′∈INF ′
min

⋃

w+∈perm(M ′+)

⋂

w−∈perm(M ′−)

Pre∗({Reg(M ′, w+, w−)})

3.3. Proof of Correctness. We need to show that Z is effectively constructible and that
[[Z]] = ZENO .

The constructibility of Z requires the following steps.

• The set INF ′
min is finite and effectively constructible. This will be shown in Subsection 3.4.

• For any M ′ ∈ INF ′
min the sets perm(M ′+) and perm(M ′−) are finite and effectively

constructible. This follows directly from Definition 3.10 and the finiteness of M ′.
• Since Reg(M ′, w+, w−) is a region, we can interpret {Reg(M ′, w+, w−)} as a MRUC. Then

Pre∗({Reg(M ′, w+, w−)}) can be effectively constructed as a MRUC by Lemma 2.12.
(Note that Pre∗ is computed w.r.t. the relation −→=−→δ ∪ −→D which includes both
timed- and discrete transitions. Thus the zeno-computations starting from markings in
[[Z]] may also start with a timed transition.)
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• By Lemma 2.10, the finite union and intersection operations on MRUC are computable
and yield a MRUC Z.

Now we show that [[Z]] = ZENO.

Lemma 3.16. [[Z]] ⊆ ZENO.

Proof. Let M ∈ [[Z]]. Then there is an M ′ ∈ INF ′
min and a sequence w+ ∈ perm(M ′+) such

that M ∈ [[
⋂

w−∈perm(M ′−) Pre∗({Reg(M ′, w+, w−)})]].

We choose the sequence w− ∈ perm(M ′−) according to Lemma 3.14 and so obtain
M ∈ [[Pre∗({Reg(M ′, w+, w−)})]] and [[Reg(M ′, w+, w−)]]↑ ⊆ ZENO. Thus M ∈ ZENO,
since Pre∗(ZENO) = ZENO .

Lemma 3.17. ZENO ⊆ [[Z]].

Proof. Let M ∈ ZENO. By the definition of zeno-marking, there exists an infinite M -
computation π and a finite number m such that ∆(π) ≤ m. It follows that there exists
an infinite suffix of π that takes only < 1/2 time. Thus there exists a marking M1 such

that M
∗

−→ M1 and an infinite M1-computation π1 with ∆(π1) < 1/2. Since M1 contains
finitely many tokens and π1 is infinite, there exists an infinite suffix of π1 such that none
of the original tokens of M1 is used in this infinite suffix (although some might still be
present; these are represented by M4, see below). Since every infinite computation must
contain infinitely many discrete transitions (see Section 2), there exists an infinite suffix of
this infinite suffix of π1 which starts with a discrete transition.

Thus there exist markings M2, M3 and M4 and a finite computation π2 such that

• M1
π2→M2 = M3 +M4

• All tokens in M3 were created during π2.
• There is an infinite M3-disc-computation π3 with ∆(π2π3) < 1/2, and thus ∆(π3) < 1/2.

Let M ′
3 := int1/2(M3). Then we have M ′

3 ∈ INF ′ by Lemma 3.9, since π3 is an infinite disc-

computation. From Definition 3.12, we have that there are permutations w+ ∈ perm(M ′+
3 )

and w− ∈ perm(M ′−
3 ) such that M3 ∈ [[Reg(M ′

3, w+, w−)]].
Since M ′

3 ∈ INF ′ and INF ′ is upward-closed (in Ω′; see Def. 3.6), there exists a marking
M ′′

3 ∈ INF ′
min such thatM ′′

3 ≤M ′
3. ThereforeM ′′+

3 ≤M ′+
3 , M ′′−

3 ≤M ′−
3 and perm(M ′′+

3 ) ⊆
perm(M ′+

3 ) and perm(M ′′−
3 ) ⊆ perm(M ′−

3 ).
This means that there also exist permutations w′

+ ∈ perm(M ′′+
3 ) with w′

+ ≤w w+

and w′
− ∈ perm(M ′′−

3 ) with w′
− ≤w w− (see Def. 2.1) and thus [[Reg(M ′′

3 , w
′
+, w

′
−)]]↑ ⊇

[[Reg(M ′
3, w+, w−)]]↑. It follows that M3 ∈ [[Reg(M ′

3, w+, w−)]] ⊆ [[Reg(M ′
3, w+, w−)]]↑ ⊆

[[Reg(M ′′
3 , w

′
+, w

′
−)]]↑.

Now consider all those tokens in M3 which are mapped to p(k−) tokens in M ′
3, i.e.,

those with a fractional part of their age which is > 1/2. These tokens (like all others in
M3) were all created during π2 and none of them had an integer age during π2, because
∆(π2) < 1/2. Thus, the fractional parts of their ages are totally independent and any
permutation is possible, i.e., for any permutation there is a computation which implements
it (for the reasons explained in the proof of Lemma 3.14).

Therefore, for every w− ∈ perm(M ′−
3 ) there is a marking M

w−

3 in N such that

• M1
∗

−→M
w−

3 +M4

• M
w−

3 ∈ [[Reg(M ′
3, w+, w−)]].
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Since M ′′
3 ≤ M ′

3 we have that for every w′
− ∈ perm(M ′′−

3 ) there is a corresponding w− ∈
perm(M ′−

3 ) with w′
− ≤w w−, i.e., w′

− is the restriction of w− to M ′′
3 . It then follows from

the property above that for every w′
− ∈ perm(M ′′−

3 ) there is a marking M
w′

−

3 := M
w−

3 in N
s.t.

• M1
∗

−→M
w′

−

3 +M4

• M
w′

−

3 ∈ [[Reg(M ′′
3 , w

′
+, w

′
−)]]↑.

It follows that for every w′
− ∈ perm(M ′′−

3 ) we have M
w−

3 +M4 ∈ [[Reg(M ′′
3 , w

′
+, w

′
−)]]↑ and

thus M1 ∈ Pre∗({Reg(M ′′
3 , w

′
+, w

′
−)}). Since M ∈ Pre∗(M1) we finally obtain

M ∈













⋂

w′
−∈perm(M ′′−

3
)

Pre∗({Reg(M ′′
3 , w

′
+, w

′
−)})













with M ′′
3 ∈ INF ′

min and w′
+ ∈ perm(M ′′+

3 ), and thus M ∈ [[Z]].

By Lemma 3.16 and Lemma 3.17 we have that ZENO = [[Z]]. It remains to show that
INF ′

min is effectively constructible.

3.4. Step 2: Computing INF ′
min . Computability of the set ZENO (in the last section)

requires that the minimal elements of any upward closed set is effectively constructible. In
this section, we show for any SD-TN, how to construct the set of minimal elements INFmin

of INF . Then INF ′
min is obtained by just restricting INFmin to standard markings (see

Def. 3.6).
For constructing INFmin , we use a result by Valk and Jantzen [VJ85]. Our algorithm

depends on the concepts of semi-linear languages, Presburger Arithmetic, Parikh’s Theorem
and Dickson’s Lemma, described in the following. Recall that we use (v1, . . . , vn) or ~v
interchangeably to denote a vector of size n.

Lemma 3.18. (Dickson’s Lemma [Dic13])
For every infinite sequence of vectors ~x1, ~x2, ~x3, . . . in N

n there exists an infinite non-
decreasing subsequence. In particular, there exist indices i, j with i < j s.t. ~xi ≤ ~xj (≤
taken component-wise).

3.4.1. Semilinear Sets. First we define linear sets.

Definition 3.19. A set L ⊆ N
n is called linear, if there exist vectors ~v0, ~v1, . . . , ~vm ∈ N

n

such that

L =

{

~v0 +

m
∑

i=1

ki~vi | k1, . . . , km ∈ N

}

We denote this linear set by L = L(~v0; ~v1, . . . , ~vm).

Example 3.20. L((0, 0); (0, 2), (2, 0)) = {(0, 0) + k1(0, 2) + k2(2, 0)| k1, k2 ∈ N} is linear.

Definition 3.21. A subset of N
n is called semilinear if it is a finite union of linear sets.

Theorem 3.22. [Gin66] Semilinear sets are closed under union, intersection, complemen-
tation and first-order quantification.
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Next we define the Parikh mapping ϕ. Given a finite alphabet Σ = {a1, . . . , an}, ϕ
is a function from Σ∗ to N

n , defined by ϕ(w) = (#a1
(w), . . . ,#an(w)), where #ai

(w) is
the number of occurrences of ai in w. Thus ϕ(ǫ) = (0, . . . , 0) and ϕ(w1 • . . . • wm) =
∑m

i=1 ϕ(wi). Finally, given a language L ⊆ Σ∗, ϕ(L) = {ϕ(w)| w ∈ L}. If ϕ(L) is semilinear
for a language L, then L is called a semilinear language.

Theorem 3.23. (Parikh’s Theorem) [Par66] ϕ(L) is effectively semilinear for each context-
free language L.

As a special case, Theorem 3.23 holds for regular languages, since every regular language
is a context-free language [Par66].

Example 3.24. Let Σ = {a1, a2, a3}.
Then ϕ(a1a2a1a3a2a3a3) = (2, 2, 3) ∈ L((2, 0, 1); (0, 1, 1)).
Also, ϕ(ab∗ca) = {(2, 0, 1) + n ∗ (0, 1, 0)| n ∈ N}.

3.4.2. Presburger Arithmetic. Presburger arithmetic is the first-order theory of the inte-
gers with addition and the ordering relation over Z, also denoted as (Z,≤,+). Formally,
Presburger arithmetic is the first-order theory over atomic formulae of the form

∑

1≤i≤n

aixi ∼ c

where ai, c are integer constants, xi-s are variables ranging over integers and ∼ is a com-
parison operator, where ∼∈ {=, 6=, <,≤, >,≥}. This means that a Presburger formula ρ is
either an atomic formula, or it is constructed from the Presburger formulae ρ1, ρ2 recursively
as follows:

ρ := ¬ρ1 | ρ1 ∧ ρ2 | ρ1 ∨ ρ2 | ∃xi.ρ1(x1, . . . , xn)

where ρ1(x1, . . . , xn) is a Presburger formula over free variables x1, . . . , xn and 1 ≤ i ≤ n.

Theorem 3.25. (Presburger) [BA93] Presburger arithmetic is decidable.

As a shorthand notation, we work with Zω = Z∪{ω} instead of the usual Z, where ω is
the first limit ordinal. This is not a problem, since Presburger-arithmetic on Zω can easily
be reduced to Presburger-arithmetic on Z as follows. For every variable x one adds an extra
variable x′ which is used in such a way that the original state x = k < ω is represented by
(x, x′) = (k, 0) and the original state x = ω is represented by (x, x′) = (0, 1). It is easy to
encode the usual properties like ω + k = ω − k = ω + ω = ω.

Theorem 3.26. [GS66] A subset of N
n is semilinear iff it is definable in Presburger Arith-

metic.



28 P. A. ABDULLA, P. MAHATA, AND R. MAYR

3.4.3. Result from Valk and Jantzen.

We recall a result from [VJ85].

Theorem 3.27. (Valk & Jantzen [VJ85]) Given an upward-closed set V ⊆ N
k, the finite

set Vmin of minimal elements of V is effectively computable iff for any vector ~u ∈ N
k
ω the

predicate ~u↓ ∩ V 6= ∅ is decidable.

Proof. Assume that the minimal elements of V , denoted by Vmin can be computed. Then
V = Vmin + N

k gives a semilinear representation of V . Since ~u↓ is also a semilinear set, a
representation of which can be found effectively, the predicate ~u↓ ∩ V 6= ∅ is decidable.

On the other hand, assume that the predicate is decidable for any vector ~u ∈ N
k
ω. The

following method then effectively constructs Vmin . First start with a singleton set of vectors
W0 := {(ω, . . . , ω)} with k ω-s. Let Wi be the set of vectors that we need to consider in
the i-th iteration and Vi the set of minimal elements found for Vmin in the i-th iteration.
Initially V0 := ∅. We let predV (~u) denote ~u ↓ ∩ V 6= ∅. We repeat the following.

Stage 1: In this stage, we perform the following two loops sequentially.

Loop 1: We choose some vector ~u from Wi and compute predV (~u). If the value is
false, then we remove u from Wi. We get out of this loop if predV (~u) is true or
Wi = ∅.

After exiting from the above loop if Wi = ∅, then Vmin = Vi and we stop the
algorithm. Otherwise, predV (~u) is true; ~u ↓ contains at least one element of Vmin

and one such element will be found in the next loop.
Loop 2: We repeat the following until all coordinates of ~u are considered. Choose

some coordinate ~u(i) of ~u which has not yet been considered and replace ~u(i) in ~u
by the smallest natural number such that predV (~u) for this new vector is still true.

The above computed new vector will then be an element of Vmin . So, we update
Vi+1 = Vi ∪ {~u}.

Stage 2: Let the new found vector be ~u = (z1, . . . , zk). In this stage, we try to find
other vectors in Vmin . We let

W ′
i =

{

(z′1, . . . , z
′
k) ∈ N

k
ω | ∃j : 1 ≤ j ≤ k : z′j = zj − 1 ∧ ∀m 6= j. z′m = ω

}

.

We update Wi+1 := min(Wi,W
′
i ) where min(W ,W ′) =

{

min(~u, ~u′)| ~u ∈ W , ~u′ ∈ W ′
}

and min of two vectors are evaluated component-wise. Then we increment the iterator by
i := i+ 1 and go back to Loop 1.

3.4.4. Computing INFmin for a Petri net. While a marking of a normal untimed Petri net
(or a SD-TN) is a mapping M : P → N (see Def. 3.1), an ω-marking is defined as a mapping
M : P → Nω, where Nω = N ∪ {ω}. In the following we work with ω-markings, i.e., when
we speak of markings these may be ω-markings.

For any Petri net N let INF be the set of markings where infinite runs start, and
INFmin the finite set of minimal elements of INF , similarly as for SD-TN in Def. 3.6. We
use the result of Valk and Jantzen to compute INFmin for a Petri net. To apply this

algorithm, we require the computability of the predicate M ↓ ∩ INF 6= ∅ (pred INF ( ~M))
for any ω-marking M . The decidability of this predicate was first shown in [BM99]. We
include a description of this construction here (adapted to our notation), because the more
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general construction for SD-TN in the next section is based on it and would be hard to
understand without it.

Definition 3.28. (Coverability graph) [KM69]
Given a Petri net N (with k places) with initial ω-marking M0, the Karp-Miller coverability
graph is a finite directed graph C = (G,→) with G ⊆ N

k
ω whose vertices are labeled with

ω-markings of N . It is constructed as follows.
Starting from M0, one begins to construct the (generally infinite) computation graph

of N , i.e., the graph of reachable markings, connected by arcs representing fired transi-
tions. However, if one encounters a marking M2 which is strictly bigger than a previ-
ously encountered marking M1 (i.e., M2 ≥ M1 and M2 6= M1) then one replaces M2 by
M2 + ω(M2 −M1). This describes the effect that by repeating the sequence of transitions
between M1 and M2 one could reach markings with arbitrarily many tokens on those places
p where M2(p) > M1(p). (Note that such sequences can be repeated because Petri nets are
monotonic.) If one encounters the same ω-marking as previously, then one creates a loop.

It follows from Dickson’s Lemma (see Lemma 3.18) that the generated graph is finite
and the construction terminates.

The following properties of the coverability graph follow directly from the construction
(see [KM69]).

Lemma 3.29.

(1) For every marking M , reachable from the initial marking M0, there is an ω-marking
MC in the coverability graph such that M ≤MC .

(2) For every ω-marking MC in C, there are markings M reachable from M which contain
arbitrarily large numbers of tokens in the places with ω in MC.

(3) The arcs in the coverabiliy graph are induced by the transitions in the Petri net. If it
is possible to fire some sequence of transitions from a marking MC in the coverability
graph, leading to a marking M ′

C, then there is a reachable marking M ≤MC in the Petri
net which can fire the same sequence of transitions, leading to a marking M ′ ≤M ′

C .

Definition 3.30. (Effect Vector) To every transition t in a normal untimed Petri net
with k places one can associate a vector ~vt ∈ Z

k which describes the effect of the transition
on the markings of the net, i.e., the change in the marking caused by firing the transition.

This means that if M1
t
→M2, then M2 = M1 + ~vt. We call ~vt the effect-vector of transition

t.

Lemma 3.31. [BM99] Given a Petri net N with k places and an ω-marking M0 ∈ N
k
ω

where Nω = N∪ {ω} and ω denotes the first limit ordinal (satisfying z + ω = z − ω = ω for
x ∈ N), it is decidable if M0 ↓ ∩INF 6= ∅.

Proof. We show that if M0 ↓∩ INF 6= ∅ then this condition will be detected by the following
construction. Furthermore, we prove that the construction does not yield any false positives.

Construction:
Let C = (G,→) with G ⊆ N

k
ω be the coverability graph of N from the initial marking

M0, which is computable (see Def. 3.28 and [KM69]).
The main idea is to analyze the coverability graph C and look for a cycle s.t. the

transitions fired in this cycle have a combined positive effect on the marking (and will thus
be repeatable). It will be shown that such a cycle in C exists if and only if M0 ↓∩ INF 6= ∅.
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First, for every ω-marking M in the coverability graph C, we compute a finite-state
automaton AM as follows.

• The transition graph of AM is the largest strongly connected subgraph of C containing
M .

• The initial state of AM is M .
• AM has only one final state, which is also M .
• Let l be the number of edges in AM . We label every arc in AM with a unique symbol Λi

for i : 1 ≤ i ≤ l. To every symbol Λi, we associate the effect-vector (see Def. 3.30) ~ζi ∈ Z
k

that describes the effect of the transition that was fired in the step from one node to the
other.

Let L(AM) be the regular language (over alphabet {Λi | 1 ≤ i ≤ l}) recognized by AM . The
aim is to find a cyclic path in AM from a marking M back to M where the sum of all the
effect-vectors of all traversed arcs is ≥ ~0. This cyclic path is not necessarily a simple cycle.
The effect-vector of an arc that is traversed j times is counted j times. Such a cyclic path
with positive overall effect is repeatable infinitely often and thus corresponds to a possible
infinite computation of the system N .

Given the automaton AM with M as its initial and the only final state, every word
in L(AM ) corresponds to a cyclic path from M to M . For any word w, let |w|Λi

be the
number of occurrences of Λi in w. The question now is if there is a word w ∈ L(AM ) such
that

∑

1≤i≤l

|w|Λi
~ζi ≥ ~0

Such words characterize loops starting and ending in the same node of the coverability
graph. We show how to answer the above question in the following.

• First we compute the Parikh image of L(AM), i.e., the set {(|w|Λ1
, . . . , |w|Λl

)| w∈L(AM)}.
This set is effectively semilinear by Parikh’s Theorem.

• By Theorem 3.26, we compute a Presburger formula ρ(x1, . . . , xl) from the semilinear
set computed above. The variables x1, . . . , xl count the number of times each edge Λi

appears in a word w ∈ L(AM ).

• Finally, to decide if
∑

1≤i≤l |w|Λi
~ζi ≥ ~0, we check the satisfiability of ρA = ρ(x1, . . . , xl) ∧

∑

1≤i≤l xi
~ζi ≥ ~0, which is again a Presburger formula. By Theorem 3.25, we can decide

whether this formula is satisfiable.

For every marking M in the coverability graph C (these are finitely many) we check this
condition for the automaton AM and we say that M0 ↓ ∩INF 6= ∅ is true if and only if the
condition holds for at least one automaton AM .

Correctness: Now we show the correctness of the above construction. If M0 ↓∩INF 6=
∅ then there exists a marking M ∈ N

k with M ≤ M0 and M ∈ INF . Thus there exists an
infinite M -computation π. By Dickson’s lemma, there are markings M ′,M ′′ and a sequence

of transitions Seq such that M
∗

−→ M ′ −→Seq M
′′ and M ′ ≤ M ′′. Thus the total effect of

Seq is non-negative.
Now, from Lemma 3.29, we know that there is a ω-marking MC in the coverability

graph such that M ′′ ≤ MC . Due to monotonicity of the transition relation, there is a path
labeled with transitions in Seq and which leads us from MC to a ω-marking larger than MC .
Repeating this process from the larger node will finally lead us to a node which is largest of
all ω-markings larger than MC . We will reach such a node Mmax

C , since the graph is finite.
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This means that we can fire transitions in Seq from Mmax
C and we get back to Mmax

C itself
(since there are no ω-marking larger than Mmax

C in C and by monotonicity Seq leads to a
larger or equal node in C). So, Mmax

C −→Seq M
max
C , i.e., there are ω-markings M1, . . . ,Mn

such that Mmax
C −→ M1 −→ . . . −→ Mn = Mmax

C with effect-vectors ~ζ1, . . . , ~ζn such that
∑

1≤i≤n
~ζi ≥ ~0. This is the condition checked in our construction.

To prove the other direction, suppose that there is a word w ∈ L(AMC
) for some ω-

marking MC in the coverability graph such that
∑

1≤i≤l |w|Λi
~ζi ≥ ~0. This means that there

is a ω-marking MC from which there is a path (through a sequence Seq of transitions)
back to itself with non-negative effect. From Lemma 3.29 we know that there are markings
M ′ reachable from M0 which agree with MC in its finite coordinates, and can be made
arbitrarily large in the coordinates where MC is ω. We can choose one such marking M ′

such that it contains enough tokens in those coordinates where MC is ω to be able to
perform one iteration of Seq . Now, Seq has a non-negative effect. This means that one can
repeatedly execute Seq starting from M ′. The reachability of such an M ′ from M0 and a
non-negative loop from M ′ implies the existence of an infinite M0-computation. This means
that M0 ↓ ∩ INF 6= ∅.

t1

R

Q

S

t2t1

(ω, ω, ω)

t2

(a) (b) (c)

t2t1
ζ1 = (−1, 1, 1) ζ2 = (1, 0,−1)

Figure 7: (a). A small Petri net, (b). Coverability graph for this net from (ω, ω, ω). (c)
Automaton A(ω,ω,ω).

Example 3.32. Consider the Petri net in Figure 7(a) and the coverability graph (Fig-
ure 7(b)) of the above Petri net from a ω-marking M = (ω, ω, ω) 2 where M(Q) = M(R) =
M(S) = ω. We show that M ↓ ∩ INF 6= ∅. The automaton produced for the single
node in the coverability graph is shown in Figure 7(c). Notice that Λ1 = t1 and Λ2 = t2.

Also, the effect-vectors ~ζ1 and ~ζ2 show the effect of firing t1 and t2 respectively. Notice that
L(A(ω,ω,ω)) = {w| w ∈ {t1, t2}

∗}. This means that ϕ(L(A(ω,ω,ω))) = L((0, 0); (1, 0), (0, 1)).
Finally, we compute a Presburger formula ρ(x1, x2) for the above linear set and from it,

construct the formula ρ(x1, x2) ∧ x1
~ζ1 + x2

~ζ2 ≥ ~0. One of the solutions of this formula is
given by x1 = x2 = k for any natural number k. This means M ↓ ∩ INF 6= ∅.

2Markings of a Petri net are written as multisets over places and vectors over the set of natural numbers
interchangeably.
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(ω, ω, ω)

(0, 0, 1)

(1, 0, 0)

t2t1

t2

(0, ω, ω) (0, 0, ω)

(ω, 0, ω)

t2

t1

(ω, ω, ω)

t2t1

t2

(a) (b) (c)

t2

t2 t1

(0, ω, 1)

t1

(1, ω, 0)

Figure 8: (a). Coverability graph from (0, ω, ω). (b) Coverability graph from (0, 0, ω). (c)
Coverability graph from (0, 0, 1).

Example 3.33. In the above, we show an example for computing pred INF (M) for an ω-
marking M . Now we show how to compute INFmin for the same Petri net using Valk
and Jantzen’s algorithm. We start with a single marking (ω, ω, ω). Immediately, we get
out of Loop 1, since pred INF ((ω, ω, ω)) is true (as shown in Example 3.32). In Loop
2, one finds a minimal element in INFmin . This is done by first reducing the first co-
ordinate for Q in (ω, ω, ω) to 0. In Figure 8(a), we show the coverability graph from
(0, ω, ω). pred INF ((0, ω, ω)) is true, since we reach a node (ω, ω, ω) in the coverability
graph from (0, ω, ω) and pred INF ((ω, ω, ω)) is already shown to be true in the previous
example. Then we replace the ω in place R to 0 and compute the coverability graph for
(0, 0, ω) in Figure 8(b). pred INF ((0, 0, ω)) is true again by the same reasoning. Notice that
pred INF ((0, 0, 0)) is false. So, finally we show the coverability graph from marking (0, 0, 1)
in Figure 8(c) and pred INF ((0, 0, 1)) is true. Thus (0, 0, 1) is included in INFmin .

In Stage 2, we have W ′
0 = {(ω, ω, 0)} and W1 = min((ω, ω, ω), (ω, ω, 0)) = {(ω, ω, 0)}.

Now we go to Loop 1 again. From Figure 9(a), it is evident that pred INF ((ω, ω, 0))
is true. Now, we again perform Loop 2. We find that pred INF ((0, ω, 0)) is false, but
pred INF ((1, ω, 0)) is true (the coverability graph from (1, ω, 0) is shown in Figure 9(b)). We
show the coverability from (1, 0, 0) in Figure 9(c) and it follows that pred INF ((1, 0, 0)) is
true. Thus (1, 0, 0) is another member of INFmin .

In Stage 2, we have W ′
1 = (0, ω, ω) and W2 = min((0, ω, ω), (ω, ω, 0)) = (0, ω, 0). Now

pred INF ((0, ω, 0)) is false and W2 = ∅ and the construction terminates. Thus INFmin =
{(0, 0, 1), (1, 0, 0)}.

3.4.5. Computing INFmin for SD-TNs.

To compute INFmin for SD-TNs, we will use Valk and Jantzen’s Theorem 3.27 again.
This algorithm requires a decision procedure for the predicate M0 ↓ ∩INF 6= ∅ for any
given ω-marking M0 ∈ N

k
ω for an SD-TN. First we construct a coverability graph for a

given SD-TN. We need the following definitions and notational conventions.
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(ω, ω, 0)
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(0, ω, 1)

t2(a)
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Figure 9: (a). Coverability graph from (ω, ω, 0) (b). Coverability graph from (1, ω, 0). (c)
Coverability graph from (1, 0, 0).

Definition 3.34. By Def. 3.1 of SD-TN, the source places and target places of transfers
are disjoint and thus after a simultaneous transfer all source places are empty. We call a
marking an ‘after transfer marking’ (AT-marking) if it is reached just after firing Trans .
We represent markings as vectors in N

k of the form (transfer source places, other places).

So AT-markings have the form (
−→
0 ,−→v ) with

−→
0 ∈ N

k′
and −→v ∈ N

k′′
with k = k′ + k′′ where

k′ is the number of transfer source places. The corresponding markings in the coverability

graph C are called ω-AT-markings and have the form (
−→
0 ,−→v ) with −→v ∈ N

k′′

ω .

First we show that the coverability graph for SD-TN can be effectively constructed
(Lemma 3.35), then we prove that this graph satisfies the required properties (Lemma 3.36)
and finally we give an example.

Lemma 3.35. For any SD-TN N with initial marking M0, the coverability graph can be
effectively constructed.

Proof. We use ω-markings from N
k
ω (where k is the number of places). One proceeds from

M0 similarly as in the Karp-Miller construction ([KM69]; see also Def. 3.28) except for the
transfer arc. The detection of loops is done slightly differently in the two cases (with and
without the transfer arc).

(1) Loop without transfer arc: If one encounters the case M1 −→Seq M2 with
• M1 < M2,
• Seq is a sequence of transitions of N such that the transfer arc was not used in Seq,
then we replace M2 by M2 + ω(M2 − M1) as in the case of Petri nets. Notice that
ωM = M ′ such that M ′(p) = ω for all place p with M(p) > 0. Obviously, Seq can be
repeated arbitrarily often to yield an arbitrarily high number of tokens on the places
where M2 is strictly larger than M1.

(2) Loop containing transfer arc: Let M1 and M2 be two markings reached just after trans-
fers, i.e., −→Trans M1 −→Seq M

′
1 −→Trans M2 (where Seq may contain other transfers).

We call such markings ω-AT-markings (AT for ‘after transfer’). If M1 < M2 then we
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replace M2 by M2 +ω(M2−M1). The sequence of transitions −→Seq−→Trans can be re-
peated arbitrarily often to yield arbitrarily high numbers of tokens on the places where
M2 is strictly bigger than M1. This is possible, because in SD-TN the set of places
which are sources of transfers and the set of places which are targets of transfers are
disjoint by Def. 3.1. Thus the transfers in −→Seq−→Trans do not negatively affect those
places p where M1(p) < M2(p). This point does not carry over to general transfer nets.
In particular, all transfer-target places, once marked by ω in this construction, will stay
ω in the future. Furthermore, all transfer source places are empty after the transfer,
since all transfers are simultaneous.

(3) If one reaches an ω-marking encountered before, then one creates a loop.

It is easy to show that the so-generated coverability graph is finite. Assume the contrary,
i.e., that there is an infinite sequence M0,M1, . . . of different nodes in the coverability graph.
Now, there are two cases.

• In this infinite sequence, there is only a finite number of occurrences of the transfer
transition Trans . Suppose Mr was the last marking produced by transfer transition.
Consider the sequence Mr+1,Mr+2, . . .. This sequence is still infinite. By Dickson’s
lemma (Lemma 3.18), any such infinite sequence of markings of the SD-TN contains an
infinite non-decreasing subsequence. Since, by our assumption above, all markings Mi are
different, this subsequence must be strictly increasing. Thus, in our construction above,
it would happen infinitely often that a place is marked by ω which previously had only
held a finite number. However, since the infinite suffix Mr+1,Mr+2, . . . does not contain
any transfer, all places marked ω stay at ω. This yields a contradiction, since there are
only finitely many places in the net.

• There is an infinite number of markings produced by the transfer transition Trans , which
appear in the sequence M0,M1, . . .. We take the subsequence M ′

0,M
′
1, . . . of M0,M1, . . .

such that each marking M ′
i for i ≥ 0 is a marking produced by the transfer transition (i.e.,

an ω-AT-marking). Since there are infinitely many transfer transitions in the sequence
M0,M1, . . ., the sequence M ′

0,M
′
1, . . . is also infinite. Now, like the previous case, we will

always find a strictly increasing subsequence of M ′
0,M

′
1, . . .. Thus, by the construction

above, we would infinitely often introduce the number ω into some places of the net.
However, this could only happen to places which are not sources of transfers, since all
source-places of transfers are marked zero in ω-AT-markings. Since those places marked
by ω are not sources of any transfers, they will always remain marked ω. (Here we
require the specific property from SD-TN. This does not hold for general transfer nets,
where a target place of one transfer could be the source place of another.) This yields a
contradiction, because there are only finitely many places in the net and ω could not be
introduced infinitely often as required above.

Since our assumption above led to a contradiction in both cases, the opposite must be true,
i.e., the generated coverability graph is finite.

Remark: Notice that if a place p is a source of a transfer transition, then M1(p) < M2(p)
does not in general imply that p may eventually contain an arbitrarily high number of
tokens. This is due to the fact that the loop may contain a transfer transition which will
remove all tokens from p.

Lemma 3.36.
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(1) For every reachable marking M from the initial marking M0 in an SD-TN, there is an
ω-marking MC in the coverability graph such that M ≤MC.

(2) For every ω-marking MC in C, there are markings M reachable from M0 which contain
arbitrarily large numbers of tokens in the places with ω in MC.

(3) The arcs in the coverability graph are induced by the transitions in the SD-TN. If some
sequence of transitions if possible to fire from a marking MC in the coverability graph,
leading to a marking M ′

C, then there is a reachable marking M ≤ MC in the SD-TN
which can fire the same sequence of transitions, leading to marking M ′ ≤M ′

C.

Proof. The proof is similar to the correctness proof of the Karp-Miller algorithm for ordinary
Petri nets [KM69].

(1) First, for every computation path staring at M0 in the SD-TN there is a corresponding
path in the coverability graph constructed in Lemma 3.35. Furthermore, markings are
only replaced by larger ω-markings in the coverability graph. By the monotonicity of
SD-TN, the first result follows.

(2) By the construction of the coverability graph for SD-TN in Lemma 3.35, values ω can
be introduced in two ways: by encountering an increasing loop without transfer arcs or
an increasing loop with transfer arcs.

In the first case, the loop can simply be repeated arbitrarily often to yield arbitrarily
high numbers of tokens on the increasing places (marked by ω in the coverability graph),
because of the monotonicity of the net, just as for ordinary Petri nets.

In the second case, new ω are only introduced for increasing loops between ω-AT-
markings, i.e., loops of the form −→Trans (~0, ~v) −→Seq M1 −→Trans (~0, ~v′) where ~v′ > ~v.
Since the source places of transfers are all marked 0 in these markings, no ωs are
introduced to them here. (However, source places of transfers may aquire ω (either
permanently or just temporarily until the next transfer) by ordinary Petri nets loops in
the first case described above.) By the special restrictions on transfers in SD-TN (unlike
in general transfer nets) the places marked by vectors ~v,~v′ which may aquire ω here
are never the source of any transfer. Thus the loop −→Seq−→Trans can be repeated
arbitrarily often to yield markings with arbitrarily high numbers of tokens on those
places where ~v′ is strictly larger than ~v.

(3) The third property follows directly from the definition of the coverability graph.

Remark 3.37. It follows directly from Lemma 3.35 and Lemma 3.36 that place-bounded-
ness is decidable for simultaneous-disjoint transfer nets, while it is undecidable for general
transfer nets [DJS99, May03].

Example 3.38. Consider a small SD-TN shown in Figure 10(a). In Figure 10(b), we show
the coverability graph C from a marking M = (2, 0, 0) of SD-TN where M(p1) = 2,M(p2) =
0 and M(p3) = 0. We omit the transfer arcs in the coverability graph if the source place
of transfer does not contain a token. Notice that Trans = (∅, ∅, (p1, p3)) and (0, 0, 2) and
(0, ω, ω) are the only ω-AT-markings in C.

3.4.6. Computing pred INF for SD-TNs.

Now that we can compute the coverability graph for SD-TN, we continue to develop
the algorithm for deciding the predicate pred INF , i.e., deciding if M0 ↓ ∩INF 6= ∅ for any
given ω-marking M0 ∈ N

k
ω for an SD-TN.
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Figure 10: (a) A small SD-TN. (b) Coverability graph C for this net.

Lemma 3.39. Given an SD-TN N with k places and an ω-marking M0 ∈ N
k
ω, it is decidable

if M0 ↓ ∩ INF 6= ∅.

Proof. First we give an algorithm to detect the non-emptiness of the intersection M0 ↓∩INF .
Let C = (G,→) with G ⊆ N

k
ω be the coverability graph of N from initial marking M0. An

infinite computation π from a markingM in M0 ↓ is detected as follows. There are two cases.
Either there are finitely many or infinitely many transfers in such an infinite computation.

• In the first case, the transfer transition Trans is used only finitely often and π has an
infinite suffix π′ which starts at some marking M ′ and only normal Petri net transitions

are used in π′. Since M
∗

−→ M ′, there is a node MC in C such that M ′ ≤ MC . To
find out whether there is a positive effect of such cycles consisting of ordinary Petri net
transitions, we let N ′ be the ordinary Petri net obtained from N by removing the transfer
transition Trans . So π′ is an infinite M ′-computation of N ′. Let INFN ′ ⊆ N

k be the
(upward-closed) set of markings from which infinite computations of N ′ start. So we
have MC ↓ ∩ INFN ′ 6= ∅. In fact, we consider each ω-marking MC ∈ G and detect the
presence of an infinite computation with just ordinary Petri net transitions if the following
condition (Cond1) holds.

(Cond1) ∃MC ∈ G.MC ↓ ∩ INFN ′ 6= ∅

This is a problem about ordinary Petri nets and it has already been shown to be decid-
able (Lemma 3.31). Deciding (Cond1) requires only finitely many calls to the decision
procedure in Lemma 3.31, because G is finite.

• In the second case, the transfer transition Trans is used infinitely often in π. Recall that
in Lemma 3.31, we construct automata from the coverability graph, for each of its nodes
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and associate an effect-vector with each edge of such an automaton. In this case, the
presence of transfer transitions in the cycles of SD-TNs does not let us follow such a
procedure directly. This is due to the fact that the effect of the transfer depends on the
amount of tokens in the source places of the transfer and that is not a constant number.

In this case, first we compute the effect-vectors between two ω-AT-markings M,M′

in the coverability graph such that M′ is reachable from M. For any pair of ω-AT-
markings M,M′ ∈ G we can effectively construct a semilinear set Effect(M,M′) ⊆ Z

k

which represents all possible effects of sequence of transitions of the form Seq.Trans
with M −→Seq−→Trans M′ where Seq is a sequence of transitions which does not contain

Trans . This is done as follows. First, we compute the semilinear sets Effect ′(M,X) ⊆ Z
k

for all X ∈ G such that X −→Trans M′ in the coverability graph C and M
∗

−→ X
without using Trans . The sets Effect ′(M,X) are semilinear and effectively constructible,
by computability of Presburger-arithmetic and its equivalence with semilinear languages
(Theorem 3.26). This is due to the fact that C is a finite graph whose arcs are labelled with
constant vectors in Z

k and the Parikh-image of regular languages is effectively semilinear.
This means that one can consider M as the initial- and X as the final state of a finite
automaton A. Each edge in A is labelled by a unique symbol Λ and there is an associated
effect-vector ζ for the effect of the transition by that edge. Let ρ(x1, . . . , xl) be the
Presburger formula for the Parikh-image of L(A) where l is the number of edges in the
coverability graph. A valuation of the variable xi for i : 1 ≤ i ≤ l gives how many times
the symbol Λi appears in a word in L(A). Given k as the number of places in SD-TN,
we have Effect ′(M,X) given by a Presburger formula

ρX(y1, . . . , yk) = ∃x1 . . . , xl. ρ(x1, . . . , xl) ∧
∧

1≤i≤k

yi =
∑

1≤j≤l

xjζj(i)

Secondly, we obtain Effect(M,M′) as a Presburger formula by introducing the effect
of transfers (Trans = (I,O,ST )) as follows. Consider the set X containing ω-markings

X such that M
∗

−→ X −→Trans M′. For each X ∈ X, we compute a Presburger formula

ρ′′X(z1, . . . , zk) = ∃y1, . . . , yk. (ρX(y1, . . . , yk) ∧ ρ′X(y1, . . . , yk, z1, . . . , zk))

where ρ′X(y1, . . . , yk, z1, . . . , zk) is a conjunction of the following formulae.
• ∀j, j′ : (pj′ , pj) ∈ ST . zj = yj + yj′ ∧ zj′ = 0. Here, ST is from Def. 3.1. This

corresponds to a transfer from place pj′ to place pj whenever (pj′ , pj) ∈ ST .
• ∀pj ∈ I. zj = yj − 1 ∧ ∀pj ∈ O. zj = yj + 1. This corresponds to Petri net part

of transfers, since I contains places from which there is an input arc to the transfer
transition and O contains places from which there is an output arc to the transfer
transitions.

• ∀j.(pj 6∈ ST ∧ pj 6∈ I ∪O) ⇒ zj = yj. Here pj 6∈ ST is used to mean that there are no
pairs (p, q) ∈ ST , such that pj = p or pj = q. This means that there is no change in
the number of tokens at the other places.

Finally the effect Effect(M,M′) =
∨

X∈X
ρ′′X(z1, . . . , zk). By Theorem 3.25, we can

compute a semilinear set from the Presburger formula given above for Effect(M,M′).
Now we construct a new finite graph C′ = (G′,→) as follows. G′ ⊆ G is the set of

ω-AT-markings in G. For M,M′ ∈ G′ we have M → M′ in C′ iff M −→Seq ′′−→Trans M′

in C where Seq ′′ does not contain Trans . The arc between M and M′ is labeled with (a
symbolic Presburger-arithmetic representation of the semilinear set) Effect(M,M′).
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We check the following condition (Cond2).

(Cond2) ∃n ∈ N.M0, . . . ,Mn ∈ G′.M0 → M1 → · · · → Mn = M0.

∃−→vi ∈ Effect(Mi,Mi+1).

n−1
∑

i=0

−→vi ≥
−→
0

Note that the Mi above do not need to be disjoint.
Now we show how to check the condition (Cond2). We transform the graph C′, whose

arcs are labeled with semilinear sets Effect(M,M′) into a new equivalent graph C′′ whose
arcs are labeled with constant vectors. Since Effect(M,M′) is effectively semilinear, it

can be represented as a finite union of linear sets of the form L(~ui;
~w1
i , . . . ,

~wni

i ) where
i : 1 ≤ i ≤ m and m ≥ 1. C′′ contains the nodes of C′ and some additional nodes:
• if there is an edge between two nodes M,M′ labeled by Effect(M,M′) (of the above

form) in C′, we add new nodes M′
i for i : 1 ≤ i ≤ m in C′′.

Also, for any pair of nodes M,M′ in C ′, labeled by
⋃

1≤i≤m L(~ui;
~w1
i , . . . ,

~wni

i ), we have

the following arcs in C′′. For each i : 1 ≤ i ≤ m, we have
• an edge from M to M′

i, labeled by ~ui.

• edges from M′
i to M′

i, labeled by
~
wj

i for j : 1 ≤ j ≤ ni.

• an edge from M′
i to M′, labeled by ~0.

Let C′′ = (G′′,→) be the graph obtained in this way. We get immediately that the
following condition (Cond3) holds for C ′′ iff (Cond2) holds for C ′.

(Cond3) ∃n ∈ N.M0, . . . ,Mn ∈ G′′.

(M0
v0→ M1

v1→ . . .
vn−1
→ Mn = M0) ∧

n−1
∑

i=0

−→vi ≥
−→
0

The condition (Cond3) is decidable, since C ′′ is a finite graph and by Parikh’s theorem
[Par66] the Parikh-image of regular languages is effectively semilinear. (Just interpret
C ′′ as a finite automaton and try out any M0 ∈ G′′ as initial and final state.) Then we
proceed as in Lemma 3.31. Thus (Cond2) is decidable.

Example 3.40. In Figure 11(a) we show C′ obtained from C of Figure 10(b) with edges
labeled by their Presburger-arithmetic representation. We have Effect((0, 0, 2), (0, ω, ω)) =
{(0, 1, 0)+k1(0, 1, 0)+k2(0,−1, 1) | k1, k2 ∈ N} and Effect((0, ω, ω), (0, ω, ω)) = {(0,−1, 1)+
k1(0, 1, 0) + k2(0,−1, 1) | k1, k2 ∈ N}. (Note that the transfer moves all tokens from the
first component to the third component.) In Figure 11(b), finally we show the graph C′′

obtained from C′ in Figure 11(a).

Correctness of the above constructions: Now we show the correctness of the above
two constructions (by using Lemma 3.36).

• Firstly, we show that (Cond1) is sufficient and necessary for the existence of an infinite
M -computation π with finitely many transfers for some M ≤M0.

Suppose there is an infinite M -computation π with finitely many transfers. Then π
has an infinite suffix π′, starting at some marking M ′ which uses only ordinary Petri
net transitions. Since N ′ is obtained by removing transfer transitions, π′ is an infinite
M ′-computation of N ′. This implies that Cond1 holds for N ′ (Lemma 3.31). Since the
coverability graph for N ′ is a subgraph of that for N , Cond1 also holds for N . On the
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Figure 11: (a). Graph C′ derived from C in Figure 10(b). (b) Graph C′′ derived from C′.

other hand, from Lemma 3.31, we have that if Cond1 holds for N ′, then there is an infinite

M ′-computation. Since M
∗

−→M ′, we have an infinite M -computation in N .
• Secondly, we show that (Cond2) is sufficient and necessary for the existence of an infinite
M -computation with infinitely many transfers for some M ≤M0.

If Cond2 is satisfied (i.e., there is a sequence Seq of transitions with non-negative
effect), then there exist markings M ≤ M0 where M0 ∈ C and M ′ ≤ M0 such that

M
∗

−→ M ′ (by definition of C, C′, C′′ and Lemma 3.36) such that M ′ is large enough to
perform Seq once from M ′. Now, Seq has a non-negative effect, therefore one can keep
on repeating Seq resulting into an infinite M ′-computation. This implies that there is an
infinite M -computation.

Now we show the other direction. Assume that there is some M ∈ N
k with M ≤ M0

and M ∈ INF and some infinite M -computation π which uses Trans infinitely often.
Thus it contains infinitely many AT-markings. Thus, by Dickson’s Lemma (Lemma 3.18,

[Dic13]), there is a computation (possibly containing several transfers) where M
∗

−→

(
−→
0 ,−→x1) −→Seq (

−→
0 ,−→x2) with −→x2 ≥ −→x1. Thus the total effect of the sequence Seq is non-

negative. From Lemma 3.36, it follows that there exists an ω-AT-marking M0 ∈ G with

M0 ≥ (
−→
0 ,−→x2). In fact there exists a largest such M0 (as in case of Petri nets, see

Lemma 3.31) such that we have M0 −→Seq M0 in C. So, Effect(M0,M0) ≥
−→
0 . The

sequence Seq can be decomposed into Seq = Seq1Seq2 . . . Seqn with Mi −→Seqi
Mi+1 for

1 ≤ i ≤ n − 1 and Mn = M0. Here {M0, . . . ,Mn} is the set of ω-AT markings visited
in Seq. In other words, each Seqi contains the transfer transition only once at the end. It
follows that M0 → M1 · · · → Mn = M0 is a cyclic path in C ′ and −→vi ∈ Effect(Mi,Mi+1)

and
∑n−1

i=0
−→vi = Effect(M0,Mn) ≥

−→
0 . Therefore the condition (Cond2) is satisfied.
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Altogether we obtain that M0 ↓ ∩ INF 6= ∅ iff (Cond1) or (Cond2) is satisfied. (It is
possible that both (Cond1) and (Cond2) are true.) Since both conditions are decidable, we
obtain decidability of M0 ↓ ∩ INF 6= ∅.

Lemma 3.41. For any SD-TN N ′ the set INF ′
min can be effectively constructed.

Proof. Since INF is upward-closed, we can, by Lemma 3.39 and Theorem 3.27, construct
the minimal elements of the set INF , i.e., the set INFmin . We obtain INF ′

min by the
restriction of INFmin to standard markings.

3.5. Characterizing ZENO.

Theorem 3.42. Let N be a TPN. The set ZENO is effectively constructible as a MRUC.

Proof. We first construct the SD-TN N ′ corresponding to N , according to Section 3.1.1.
Then we consider the MRUC Z from Def. 3.15.

We have ZENO = [[Z]] by Lemma 3.16 and Lemma 3.17. The MRUC Z is effectively
constructible by Lemma 3.41, Definition 3.15, Lemma 2.12 and Lemma 2.10.

4. The Zenoness-Problem for Discrete-timed Petri Nets

In this section, we discuss how to characterize the set ZENO for discrete-timed Petri nets,
thus solving the open problem from [dFERA00]. First we describe how the semantics of a
discrete-timed Petri net is different from that of a dense-timed Petri net.

• Firstly, the ages of the token are natural numbers rather than real numbers.
• Secondly, the timed transition takes only discrete steps.

A direct solution for discrete-timed nets is to simply modify the construction of the
SD-TN N ′ in Section 3.1.1 by removing the time-passing phase in Subsubsection 3.1.4. The
resulting net N ′ is then a normal Petri net, since it does not contain a transfer arc. This
modified construction would yield ZENO for the discrete-time case, because (unlike in the
dense-time case) every infinite zeno-computation in a discrete-time net has an infinite suffix
taking no time at all.

In the special case where all time intervals on transitions are bounded (i.e., ∞ does not
appear) there is another solution. Here one can encode discrete-timed nets into dense-timed
nets, as shown in Figure 12. The trick is to split the intervals on the input (output) arcs to
several point intervals on a number of transitions.

5. Arbitrarily Fast Computations

If M0 ∈ ZENO then, by definition, there exists an infinite M0-computation that requires
only finite time, i.e., ∃m,π.∆(π) ≤ m. It follows that for any smaller number m′ with

0 < m′ ≤ m there exists some marking M ′ with M0
∗
→ M ′ and an infinite suffix π′ of π

s.t. π′ is an infinite M ′-computation with ∆(π′) ≤ m′. Thus, there exist more and more
markings with faster and faster computations. Formally,

∀ǫ > 0.∃Mǫ ∈ Post∗(M0), an infinite πǫ. Mǫ
πǫ→ ∧ ∆(πǫ) ≤ ǫ (5.1)

However, this does not imply that there exists some fixed reachable marking M where
arbitrarily fast computations start, because each Mǫ could be different. The existence of



DENSE-TIMED PETRI NETS 41

[1 : 2]

[0 : 1]

t

p

q

1.

q

p

[0 : 0] [1 : 1]

[2 : 2] [1 : 1] [2 : 2]

2.

[0 : 0] [1 : 1]

[1 : 1]

Figure 12: Simulating (1) t in TPN by (2) a set consisting of 4 transitions in 2.

arbitrarily fast computations from a fixed reachable marking is a stronger condition than
zenoness, defined as follows.

∃M ∈ Post∗(M0).∀ǫ > 0.∃ an infinite πǫ. M
πǫ→ ∧ ∆(πǫ) ≤ ǫ (5.2)

In general, condition (5.1) does not imply condition (5.2), as will be shown by Lemma 5.1.

All-Zenoness-Problem

Instance: A timed Petri net N , and a marking M of N .
Question: For all ǫ > 0 does there exist an infinite M -computation πǫ s.t. ∆(πǫ) ≤ ǫ ?

A marking M is called an allzeno-marking of N iff the answer to the above problem is ’yes’.
We consider a timed Petri net N . We let ALLZENO denote the set of the allzeno-

markings of N .

Lemma 5.1. For all TPN we have Pre∗(ALLZENO) ⊆ ZENO. There exist TPN (e.g.,
the TPN in Figure 13) where the inclusion is strict.

Proof. The inclusion ALLZENO ⊆ ZENO follows directly from the definitions (let, e.g.,
ǫ := 1). Since Pre∗ is monotonous, we get Pre∗(ALLZENO) ⊆ Pre∗(ZENO) = ZENO .

Now we consider the example TPN in Figure 13 with initial marking

M0 := [(X, 1), (A, 1), (Y, 0.9)]

There is a zeno run π from M0 of the following form: Transitions t1 and t2 alternate and
the length of the delays between them drops exponentially.

Formally, π = (→t1→δi
→t2→δi+1

)i=0,2,4,... with δi = (0.1) ∗ 2−i and thus ∆(π) ≤ 0.2.
Therefore M0 ∈ ZENO.

Now we show that M0 /∈ Pre∗(ALLZENO).
In every reachable marking M ∈ Post∗(M0) there is one token on place X, one token

on place Y and either one token on place A or one token on place B. Without restriction
we consider the case where there is a token on place A; the other case is symmetric. So we
have M = [(X,χ), (A,α), (Y, ψ)]. If χ > 1, α > 1 or ψ > 1 or χ 6= α then there is no infinite
run at all. Otherwise, if χ < 1 then for ǫ := (1 − χ)/2 > 0 there is no run πǫ from M with
∆(πǫ) ≤ ǫ, and thus M /∈ ALLZENO. There remains the case where χ = α = 1. Then
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1 B

[0 : 1)

[0 : 1)

A

t1

[1 : 1]
t2

[1 : 1]

X
[1 : 1]

1
[0 : 1)

0.9[1 : 1]
Y

[0 : 1)

Figure 13: A TPN with initial marking M0 := [(X, 1), (A, 1), (Y, 0.9)] ∈ ZENO.
No reachable marking is in ALLZENO, but allzeno markings exist, e.g.,
[(X, 1), (Y, 1), (A, 1), (B, 1)]. Note the half-open intervals [0 : 1) which do not
include 1.

transition t1 must fire immediately, because otherwise the tokens become too old (i.e., > 1)
and there is no infinite run. Let the resulting marking be M ′ = [(X,χ′), (Y, ψ), (B,β)].
By construction of the net, we have β < 1. If ψ 6= β then there is no infinite run. So
we must have ψ = β < 1. Then, for ǫ := (1 − ψ)/2 > 0 there is no infinite run πǫ from
either M ′ or M with ∆(πǫ) ≤ ǫ. Thus M /∈ ALLZENO. So we have shown that no
reachable M ∈ Post∗(M0) is in ALLZENO, i.e., Post∗(M0) ∩ ALLZENO = ∅. Therefore,
M0 /∈ Pre∗(ALLZENO).

Now we show that the All-Zenoness-Problem for TPN is decidable. In fact, the set
ALLZENO is effectively constructible as a MRUC.

Intuition: The construction of ALLZENO is similar to the construction of ZENO in
Section 3. The main differences can be understood with the following observations.

• In arbitrarily fast runs (unlike in zeno-runs) no tokens of the initial marking can reach
the next higher integer age by aging. For example, a token of age 1 − ǫ for ǫ > 0 cannot
reach age 1 in a run π with ∆(π) ≤ ǫ/2. On the other hand, tokens which are newly
created during the run can reach the next higher integer age by aging, since their ages
may be chosen (nondeterministically) arbitrarily close to the next higher integer. This is
because all the bounds of the time intervals on transition arcs in the TPN are integers.

• If it were not for the initial marking, we would have the following situation: If there is a
run π with ∆(π) = ǫ where 0 < ǫ < 1 then there also exists a run π′ with ∆(π′) = ǫ/2.
One just replaces any delay of length δ in π by a shorter delay δ/2 in π′ and any token of
age x which is newly created in π is replaced in π′ by a newly created token (on the same
place) of age x+(⌈x⌉−x)/2. Furthermore, a token with an integer age i will always have
a non-integer age i+ δ after some delay δ for any 0 < δ < 1, i.e., regardless of how small
δ is.
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• How to treat the tokens of the initial marking? Since none of them can age to the next
higher integer in arbitrarily fast computations, they cannot be encoded as p(k−) tokens
in the corresponding SD-TN. Instead they are all encoded as p(k) tokens (if they have an
integer age) or as p(k+) tokens (if they have a non-integer age).

• Finally, there is the problem that arbitrarily fast computations can be either disc-com-
putations or time-computations, depending on whether their first transition is discrete
or timed. In the construction of the set ZENO this was elegantly solved, because this
construction included the Pre∗ operation which is taken w.r.t. all transitions (both dis-
crete and timed). However, since of construction of ALLZENO does not include Pre∗,
this difference must be addressed explicitly here.

• Given this, one can encode arbitrarily fast computations of TPN into computations of
SD-TN, in a similar way as for zeno-computations (with delay < 1) in Section 3.

Construction of ALLZENO: Given a TPN N , we first construct a SD-TN N ′ in the same
way as in Subsection 3.1. Then we define a mapping int from markings of N to markings
of N ′, similarly as in Definition 3.8.

Definition 5.2. We define a function int : (P × R
≥0)

⊙
→ (P ′ → N) that maps a marking

M of N to its corresponding marking M ′ in N ′. M ′ := int(M) is defined as follows.

M ′(p(k)) := M((p, k)) for k ∈ N, 0 ≤ k ≤ max .
M ′(p(k+)) :=

∑

k<x<k+1M((p, x)) for k ∈ N, 0 ≤ k ≤ max − 1.
M ′(p(max+)) :=

∑

max<xM((p, x))
M ′(p((k + 1)−)) := 0 for k ∈ N, 0 ≤ k ≤ max − 1.
M ′(pdisc) := 1
M ′(ptime1 ) := 0
M ′(ptime2 ) := 0
M ′(pcount ) := 0

Note that M ′ = int(M) is a standard marking according to Def. 3.6, and M ′ does not
contain any p(k−) tokens.

Next we define an operation τ which encodes the effect of passing an arbitrarily small,
but non-zero, amount of time. No tokens can age to the next higher integer age in arbitrarily
short time, but all tokens of an integer age k will have an age > k afterwards. Given a
standard marking M ∈ Ω′ (recall Def. 3.6) of the SD-TN N ′, we define M ′ := τ(M) as
follows.

M ′(p(k)) := 0 for k ∈ N, 0 ≤ k ≤ max .
M ′(p(k+)) := M(p(k+)) +M(p(k)) for k ∈ N, 0 ≤ k ≤ max − 1.
M ′(p(max+)) := M(p(max+)) +M(p(max ))
M ′(p((k + 1)−)) := M(p((k + 1)−)) for k ∈ N, 0 ≤ k ≤ max − 1.
M ′(pdisc) := M(pdisc)
M ′(ptime1 ) := M(ptime1 )
M ′(ptime2 ) := M(ptime2 )
M ′(pcount ) := M(pcount )

Note that the operation τ is only defined on standard markings and its result is also a
standard marking.
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Unlike in Section 3, there is a more direct correspondence between the computations
of a marking M and the computations of int(M) and τ(int(M)). (Recall the Def. 3.6 of
INF ′.)

Lemma 5.3. Consider a TPN N with marking M0 and the corresponding SD-TN N ′.
M0 ∈ ALLZENO =⇒ (int(M0) ∈ INF ′ ∨ τ(int(M0)) ∈ INF ′).

Proof. Let M0 ∈ ALLZENO. Then there exist arbitrarily fast computations from M0. It
follows that there are either arbitrarily fast disc-computations from M0, or arbitrarily fast
time-computations from M0 (or both). Let

D := {(⌈x⌉ − x) | ∃p.M0((p, x)) > 0 ∧ (⌈x⌉ − x) > 0}

(1) First we consider the case that there are arbitrarily fast disc-computations from M0.
There are two cases.
(a) If D = ∅ then all tokens in M0 have integer ages. It follows that int(M0) does

not contain any p(k+) or p(k−) tokens. We let δ := 1/2 and obtain intδ(M0) =
int1/2(M0) = int(M0). By our assumption there are arbitrarily fast disc-computa-
tions from M0 and thus there exists an infinite M0-disc-computation π with ∆(π) <
1/2 = 1 − δ. Therefore, by Lemma 3.9, int(M0) = intδ(M0) ∈ INF ′.

(b) If D 6= ∅ then we define ǫ > 0 as the minimal non-zero distance of the age of any
token in M0 from the next higher integer.

ǫ := min(D) > 0

Let δ := 1 − ǫ/2. Then intδ(M0) = int(M0). By our assumption there are arbi-
trarily fast disc-computations from M0 and thus there exists an infinite M0-disc-
computation π with ∆(π) ≤ ǫ/3 < 1 − δ. Therefore, by Lemma 3.9, int(M0) =
intδ(M0) ∈ INF ′.

(2) Now we consider the case that there are arbitrarily fast time-computations from M0.
Again there are two cases.
(a) Assume D = ∅, i.e., all tokens in M0 have integer ages. Since there are arbitrarily

fast time-computations from M0, there exists a marking M1 such that M0 →λ M1

with 0 < λ < 1/3 and an infinite disc-computation π from M1 with ∆(π) < 1/3.
It follows that τ(int(M0)) = int(M1). We let δ := 1/2 and obtain intδ(M1) =
int1/2(M1) = int(M1) = τ(int(M0)). Since π is an infinite M1-disc-computation

with ∆(π) < 1/3 < 1/2 = 1 − δ, Lemma 3.9 yields intδ(M1) ∈ INF ′. Therefore
τ(int(M0)) = intδ(M1) ∈ INF ′.

(b) Now assume D 6= ∅. As before, we define ǫ := min(D) > 0 and δ := 1 − ǫ/2.
Since there are arbitrarily fast time-computations from M0, there exists a marking
M1 such that M0 →λ M1 with 0 < λ < ǫ/3 and an infinite disc-computation π
from M1 with ∆(π) < ǫ/3. It follows that τ(int(M0)) = int(M1), because λ <
ǫ. Furthermore, intδ(M1) = int(M1), because λ < ǫ/3 < ǫ/2 = 1 − δ. Thus
τ(int(M0)) = intδ(M1). Since π is an infinite M1-disc-computation with ∆(π) <
ǫ/3 < ǫ/2 = 1 − δ, Lemma 3.9 yields intδ(M1) ∈ INF ′. Therefore τ(int(M0)) =
intδ(M1) ∈ INF ′.

Lemma 5.4. Consider a TPN N with marking M0 and the corresponding SD-TN N ′.
int(M0) ∈ INF ′ =⇒M0 ∈ ALLZENO.
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Proof. Let M ′ := int(M0) ∈ INF ′. Then, by Lemma 3.14, we have

∃w− ∈ perm(M ′−).∀w+ ∈ perm(M ′+). [[Reg(M ′, w+, w−)]]↑ ⊆
⋃

δ>0

ZENO1−δ

From the definition of the function int we know that M ′− is empty and thus w− = ǫ,
i.e., the empty sequence. Thus, ∀w+ ∈ perm(M ′+). [[Reg(M ′, w+, ǫ)]]

↑ ⊆
⋃

δ>0 ZENO1−δ,

and therefore M0 ∈
⋃

δ>0 ZENO1−δ. It follows that there exists some fixed δ > 0 such

that M0 ∈ ZENO1−δ. Let ǫ := 1 − δ < 1. Then there exists some M0-computation πǫ

s.t. ∆(πǫ) ≤ ǫ < 1. This M0-computation πǫ in N corresponds to an M ′-computation in
N ′. Therefore, in πǫ, no original tokens in M0 reach the next higher integer age by aging,
because M ′ := int(M0), i.e., because there are no p(k−) tokens in M ′.

We now show that there exist arbitrarily fast M0-computations πǫ/n with ∆(πǫ/n) ≤ ǫ/n
for any n ≥ 1. For any n ≥ 1 we obtain πǫ/n by modifying πǫ as follows. Every timed
transition →δi

in πǫ is replaced by a timed transition →δi/n in πǫ/n. In order to ensure that
in πǫ/n the same tokens do (or don’t) reach/exceed the next higher integer age during the
same timed transition as in πǫ, we modify the ages of the newly created tokens. Any token
of age x which is newly created in πǫ is replaced in πǫ/n by a newly created token (on the
same place) of age x+ (n− 1)(⌈x⌉ − x)/n. This is possible, because all bounds of the time
intervals on transition arcs in the TPN are integers. Since no original tokens in M0 age to
the next higher integer age in those runs, this suffices to make πǫ/n a feasible run from M0.
So we obtain that πǫ/n is a M0-computation and ∆(πǫ/n) = ∆(πǫ)/n ≤ ǫ/n. Therefore,
M0 ∈ ALLZENO.

Lemma 5.5. Consider a TPN N with marking M0 and the corresponding SD-TN N ′.
M0 ∈ ALLZENO ⇐⇒ (int(M0) ∈ INF ′ ∨ τ(int(M0)) ∈ INF ′).

Proof. The “⇒” implication holds by Lemma 5.3. For the “⇐” implication there are two
cases.

(1) int(M0) ∈ INF ′. Then M0 ∈ ALLZENO by Lemma 5.4.
(2) τ(int(M0)) ∈ INF ′. Let

D := {(⌈x⌉ − x) | ∃p.M0((p, x)) > 0 ∧ (⌈x⌉ − x) > 0}

If D 6= ∅ then let ǫ := min(D)/2 > 0 else let ǫ := 1/2. Let ǫi := ǫ/i for i ≥ 1. Let Mi

be the marking that is reached from M0 after ǫi time passes, i.e., M0 −→ǫi
Mi. Since

ǫi < min(D) (or ǫi < 1 if D = ∅), we have int(Mi) = τ(int(M0)) and thus int(Mi) ∈
INF ′ for all i ≥ 1. It follows from Lemma 5.4 that Mi ∈ ALLZENO. Therefore there
exist arbitrarily fast time-computations from M0 and thus M0 ∈ ALLZENO.

Similarly as in Section 3, we compute the set ALLZENO as a multi-region upward
closure. We compute a MRUC AZ and prove that [[AZ ]] = ALLZENO.

Definition 5.6. Let N be a TPN with corresponding SD-TN N ′, as in Subsection 3.1, and
INF ′

min from Def. 3.6. Let INF ′′
min be the restriction of INF ′

min to markings without tokens
on p(k−) places. Let

INF ′′
min := {M ∈ INF ′

min | ∀p, k. M(p(k−)) = 0}

and
Γ := {M ′ ∈ Ω′ | M ′ ∈ INF ′′

min ∨ τ(M ′) ∈ INF ′′
min}
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and
AZ :=

⋃

M ′∈Γ

⋃

w+∈perm(M ′+)

{Reg(M ′, w+, ǫ)}

Note that it follows from the definition of the function τ and the finiteness of INF ′′
min

that Γ is finite.

Lemma 5.7. [[AZ ]] = ALLZENO.

Proof. Let M ∈ [[AZ ]]. Then there is an M ′ ∈ Γ and a w+ ∈ perm(M ′+) such that M ∈
[[Reg(M ′, w+, ǫ)]]

↑. Thus there exists some marking M ′′ ≤ M s.t. M ′′ ∈ [[Reg(M ′, w+, ǫ)]].
Therefore int(M ′′) = M ′ ∈ Γ. Since INF ′′

min ⊆ INF ′, it follows that int(M ′′) ∈ INF ′ ∨
τ(int(M ′′)) ∈ INF ′. By Lemma 5.5 we have M ′′ ∈ ALLZENO and thusM ∈ ALLZENO↑ =
ALLZENO.

To prove the reverse inclusion, let M ∈ ALLZENO. Then, by Lemma 5.5, int(M) ∈
INF ′ or τ(int(M)) ∈ INF ′.

• Consider the case where int(M) ∈ INF ′. From the definition of the function int (Def. 5.2)
it follows that int(M) does not contain any tokens on p(k−) places. Therefore, there exists
some marking M ′′ ∈ INF ′′

min s.t. int(M) ≥M ′′ ∈ Γ.
• Consider the case where τ(int(M)) ∈ INF ′. From the definition of the functions int

and τ (Def. 5.2) it follows that τ(int(M)) does not contain any tokens on p(k−) places.
Therefore, there exists some marking M ′ ∈ INF ′′

min s.t. τ(int(M)) ≥M ′. It follows from
the definition of the functions int and τ and the fact that M ′ ∈ INF ′′

min that there exists
some marking M ′′ ≤ int(M) s.t. τ(M ′′) = M ′. Since M ′ ∈ INF ′′

min , we have M ′′ ∈ Γ.
Therefore there exists some marking M ′′ ∈ Γ s.t. int(M) ≥M ′′.

Thus in both cases there is some marking M ′′ ∈ Γ s.t. int(M) ≥M ′′.
It follows that there exists some w+ ∈ perm(M ′′+) such that M ∈ [[Reg(M ′′, w+, ǫ)]]

↑ ⊆
[[AZ ]].

Theorem 5.8. Let N be a TPN. The set ALLZENO is effectively constructible as a MRUC.

Proof. We first construct the SD-TN N ′ corresponding to N , according to Subsection 3.1.
Then we consider the MRUC AZ from Def. 5.6. We have ALLZENO = [[AZ ]] by Lemma 5.7.
The MRUC AZ is effectively constructible by Lemma 3.41, Definition 5.6, and Lemma 2.10.

Finally, we consider the problem whether, for a given marking, there exists an infinite
computation which takes no time at all.

Zerotime-Problem

Instance: A timed Petri net N , and a marking M of N .
Question: Does there exist an infinite M -computation π such that ∆(π) = 0 ?

A marking M is called a zerotime-marking of N iff the answer to the above problem is
’yes’.

For a timed Petri net N , we let ZEROTIME denote the set of its zerotime-markings.
The construction of the set ZEROTIME as a MRUC is similar to the construction of

ALLZENO. The differences are that in the construction of the SD-TN N ′ the transitions
which encode the time-passing phase (i.e., Subsubsection 3.1.4) are left out. (Thus N ′

is a normal Petri net.) Furthermore, the function τ is not needed, since all zerotime-
computations are disc-computations.
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Lemma 5.9. Consider a TPN N with marking M0 and the corresponding Petri net N ′ as
in Subsection 3.1 (without Subsubsection 3.1.4). Then M0 ∈ ZEROTIME ⇐⇒ int(M0) ∈
INF ′.

Proof. IfM0 ∈ ZEROTIME then it has an infinite disc-computation π with ∆(π) = 0. Thus
int(M0) ∈ INF ′ by the proof of Lemma 5.3. If int(M0) ∈ INF ′ then M0 ∈ ZEROTIME ,
because there are no time-passing phases in the Petri net N ′.

The definition of the needed MRUC ZT is a simplification of Definition 5.6.

Definition 5.10. Let N be a TPN with corresponding Petri net N ′, as in Subsection 3.1
(without Subsubsection 3.1.4), and INF ′

min from Def. 3.6. Let INF ′′
min be the restriction of

INF ′
min to markings without tokens on p(k−) places. Let

INF ′′
min := {M ∈ INF ′

min | ∀p, k. M(p(k−)) = 0}

and
ZT :=

⋃

M ′∈INF ′′
min

⋃

w+∈perm(M ′+)

{Reg(M ′, w+, ǫ)}

Lemma 5.11. [[ZT ]] = ZEROTIME.

Proof. This follows directly from the definitions and Lemma 5.9, similarly as in Lemma 5.7.

Theorem 5.12. Let N be a TPN. The set ZEROTIME is effectively constructible as a
MRUC.

Proof. We first construct the Petri net N ′ corresponding to N , according to Subsection 3.1
(without Subsubsection 3.1.4). Then we consider the MRUC ZT from Def. 5.10. We
have ZEROTIME = [[ZT ]] by Lemma 5.11. The MRUC ZT is effectively constructible by
Lemma 3.41, Definition 5.10, and Lemma 2.10.

6. Universal Zenoness

The zenoness problem in Section 3 can be seen as existential zenoness, i.e., the question
whether there exists an infinite zeno computation, and it is decidable by Theorem 3.42.

Here we consider the universal zenoness problem, i.e., the question whether all infinite
computations from a given marking are zeno (i.e., take only finite time).

Universal Zenoness Problem

Instance: A timed Petri net N and a marking M .
Question: Is it the case that for every infinite M -computation π, there exists a finite

number m s.t. ∆(π) ≤ m ?

We will prove the undecidability of the universal zenoness problem by a reduction from
an undecidable problem for lossy counter machines [May03]. To simplify the presentation,
we no not consider the universal zenoness problem directly, but its negation.

Non-Zenoness-Problem

Instance: A timed Petri net N and a marking M .
Question: Does there exist an infinite M -computation π, such that ∆(π) = ∞ ?
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Obviously, a Petri netN with markingM is a positive instance of the Universal Zenoness
Problem if and only if it is a negative instance of the Non-Zenoness-Problem.

A marking M is called a nonzeno-marking of N iff the answer to the Non-Zenoness-
Problem problem is ’yes’.

We consider a timed Petri net N . We let NONZENO denote the set of the non-zeno-
markings of N . The set NONZENO is not the complement of the set ZENO. A marking
of a TPN can have infinite zeno runs or infinite nonzeno runs or both or neither.

In the following, we show that the Non-Zenoness-Problem is undecidable, which implies
the undecidability of the Universal Zenoness Problem. The proof is done by reducing the
universal termination problem for lossy counter machines to the Non-Zenoness-Problem for
TPN.

6.1. Lossy Counter machines. Lossy counter machines (LCM) [May03] are Minsky-
counter machines where the values in the counters can spontaneously decrease (i.e., part of
the counter value is lost). Different versions of LCM are defined by the way in which this
decrease can happen (e.g., just 1 lower, any lower value, or a reset to zero), which is formally
expressed by so-called lossiness relations [May03]. Here we consider the classic variant of
LCM where counters can spontaneously change to any lower value. In this model, any test
for zero of a counter could always be successful by a spontaneous reset to zero. Thus classic
LCM are equivalent to the following model.

A lossy counter machine is a tuple L = (Q, q0, C, δ), where Q is a finite set of states,
q0 ∈ Q is the initial state, C is a finite set of counters and δ is a finite set of instructions.
An instruction is a triple of the form (q, instr , q′), where q, q′ ∈ Q and instr is either an
increment (of the form c++); a decrement (of the form c−−); or a reset (of the form c := 0)
for a counter c in C.

A configuration γ of L is of the form (q,Val), where q ∈ Q and Val is a mapping from
the set C of counters to the set N of natural numbers. We define a transition relation ❀ on
the set of configurations such that (q,Val) ❀

(

q′,Val ′
)

iff one of the following conditions is
satisfied:

(1) (q, c++, q′) ∈ δ, Val ′(c) = Val(c) + 1 and Val ′(c′) = Val(c′) if c′ 6= c.
(2) (q, c−−, q′) ∈ δ, Val(c) > 0, Val ′(c) = Val(c) − 1 and Val ′(c′) = Val(c′) if c′ 6= c.
(3) (q, c := 0, q′) ∈ δ, Val ′(c) = 0 and Val ′(c′) = Val(c′) if c′ 6= c.
(4) q′ = q, Val ′(c) = Val(c) − 1 for some c ∈ C, and Val ′(c′) = Val(c′) if c′ 6= c.

We use
∗
❀ for denoting the reflexive, transitive closure of ❀. For a configuration γ, a γ-

computation π of L is a sequence of configurations γ0, γ1, γ2, . . ., where γ0 = γ and γi ❀ γi+1,
for i ≥ 0.

The universal termination problem for LCMs is defined as follows (see [May03]).

∃n.LCM ω

Instance: A LCM L with 4 counters and a control-state q0.
Question: Does there exist a finite number n such that there is an infinite computation of

L from the configuration γ0 = (q0, n, 0, 0, 0)?

Theorem 6.1. [May03] ∃n.LCM ω is undecidable.



DENSE-TIMED PETRI NETS 49

6.2. Undecidability. We show the undecidability of the non-zenoness problem for TPNs
through a reduction from ∃n.LCM ω.

Given an instance of ∃n.LCM ω, i.e., an LCM L and a state q0 of L, we construct an
equivalent instance of the non-zenoness problem, i.e., we derive a TPN N and a marking
M of N , such that non-zenoness problem for TPNs has a positive answer if and only if
∃n.LCM ω has a positive answer.

The idea is as follows. First the TPN performs a loop, taking zero time, which puts
a number n of tokens on a certain place. This encodes guessing the number n. Then the
TPN faithfully simulates the computation of the LCM from configuration (q0, n, 0, 0, 0) in
such a way that every single step takes at least one time unit. This simulation of the LCM
is the only possible infinite non-zeno run of the TPN since the initial guessing-loop takes
zero time. Thus the TPN has an infinite non-zeno run iff there exists a number n s.t. the
LCM has an infinite run from (q0, n, 0, 0, 0).

The following encoding of LCM into TPN is similar to the constructions in [dFERA00,
AN02], except that we enforce that every simulation step takes at least one time unit. This
delay is crucial for our proof.

Consider the LCM L = (Q, q0, C, δ). We construct a corresponding timed Petri net
(TPN) N = (P, T, In,Out) as follows. For each state q ∈ Q there is a place in P which
we call place q. We use PQ to denote the set of places of N corresponding to the states
Q. Also, for each counter c ∈ C there is a place in P which we call place c. We use PC

to denote to the set of places corresponding to counters. There are also six intermediate
places for simulating each increment and decrement instructions and five such places for
simulating each reset instruction of the LCM.

A configuration γ of L is encoded by a marking M in N when the following conditions
are satisfied.

• The state of γ is defined in N by the element of PQ which contains a token. (The TPN
N satisfies the invariant that there is at most one place in PQ which contains a token).

• The value of a counter c in γ is defined in M by the number of tokens in place c which
have ages equal to 0. (Tokens which have ages greater than 0 are considered to have been
lost and do not affect the value of the counter).

Losses in L are simulated either by making the age of the token strictly greater than 0, or
by firing a special lossc transition which can always remove tokens from the place c in PC .
Transitions in L are encoded by functions In and Out in N reflecting the above properties
and are defined as follows.

• An increment ı = (q, c++, q′) in δ is simulated by a set of transitions in T which are of
the form in Figure 14. These transitions effectively move a token from place q to place
q′ and adds a token of age 0 to place c. However, we let at least one time unit pass
during these transitions. To achieve this, we use two intermediate places r1ı and r2ı for
each increment instruction ı. The transition t1ı is fired by moving a token from place q to
place r1ı and resets its age to 0. The token in r1ı has to stay there for a time equal to 1 and
then the transition t2ı is fired. If more time passes, then this token in r1ı will forever stay
in place r1ı after which no tokens will ever reside in any place in PQ and thus the net will
deadlock. The idea is that the TPN should not have any zeno-run during the simulation
of any operation of the LCM. So, during the simulation of the increment-operation, we
need to wait at least for one time unit. This makes the ages of all tokens in places PC

at least equal to 1. Thus, in order to avoid resetting the values of the counters, we add,
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Figure 14: Simulating the operation of increasing the counter c.
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Figure 15: Simulating the operation of decreasing the counter c.
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for each counter in C a new transition. In Figure 14, we assume that PC = {c1, . . . , cn}
and thus we add the transitions ℓ1ı , ℓ

2
ı , . . . , ℓ

n
ı . These transitions are used to refresh the

ages of the tokens in the places in PC . Now, if a token in place c1 has its age equal to
1, and thus has become too old for firing other transitions (decrements), it is replaced by
a fresh token of age 0. Notice that the refreshment phase either does not take any time
at all or it deadlocks. Finally, when the transition t3ı is fired, the new control state will
be q′ and there will be a new token of age 0 in c. The resulting marking will therefore
correspond to the counter c having an increment by the value 1. The refreshing process
for the counters c1, . . . , cn will be stopped after firing t3ı , since the token in r2ı will now
be removed. Notice that some tokens in c1, c2, . . . , cn may be lost (i.e., may still have age
greater or equal to 1), since the TPN has a lazy semantics and these tokens may not have
been refreshed. Possibly losing tokens is allowed in the simulation of LCM by TPN, since
the semantics of LCM allows spontaneous decreases in counters.

• A decrement ı = (q, c−−, q′) in δ is simulated by a similar set of transitions in T which
are of the form in Figure 15. These transitions also move a token from place q to place q′

and remove a token of age 0 from place c. Again, we let at least one time unit pass during
these transitions. The description is similar to the case for the increment-operation.

• For each place c in PC = {c1, . . . , cn}, there is a transition which we call lossc (Figure 16).
A transition lossc removes a token of age 0 from the counter c ∈ PC and thus simulates
the lossiness of counter c.

        ..............

losscn

[0 : 0]

lossc2lossc1

[0 : 0]

c1 c2 cn

[0 : 0]

Figure 16: Simulating losses.

• The construction for the reset instruction ı = (q, c := 0, q′) in δ is shown in Figure 17.
The idea is that we reset the value of counter c to 0, by making the ages of all tokens

in place c at least equal to 1. Observe that we simulate resetting the counter in L by
resetting the counter in N . All tokens in each of the places in PC which had age 0 have
now age equal to 1. Thus, in order to avoid resetting the values of the counters other than
c, we add, for each counter in C − {c} a new transition. In Figure 17, we assume that
PC − {c} = {c1, . . . , cn} and thus we add the transitions ℓ1ı , ℓ

2
ı , . . . , ℓ

n
ı . These transitions

are used to refresh the ages of the tokens in the places in PC − {c}, i.e., all counters can
be refreshed expect c. Now, if a token in place ci has its age equal to 1, and thus has
become too old for firing other transitions (decrements), it is replaced by a fresh token
of age 0. Finally, when the transition t3ı is fired, the new control state will be q′, and
each token in place c will have an age which is at least one. The resulting marking will
therefore correspond to the counter c having the value 0.

• Initialization. To guess the initial value in counter c1 of the LCM, we add an extra place
qinit in P and add two transitions in T , shown in Figure 18. First the transition tı1 is
enabled if there is a token in qinit with age 0. By executing this transition n times (for
some n ≥ 0) without letting any time pass, we can produce n tokens in the counter c1.
This simulates an initial value n of c1 in LCM. Then, we switch control for simulating the
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Figure 17: Simulating the operation of resetting the value of the counter c to 0. All other
counters cj with cj 6= c can be refreshed.

usual operations of the LCM by executing the transition tı2 in Figure 18, which moves
the token from qinit to q0.

[0 : 0]
[0 : 0][0 : 0]

c1 q0

[0 : ∞)[0 : 0]

qinit

tı1 tı2

Figure 18: Initialization.

Consider a marking M of N and a configuration γ = (q,Val) of L. We say that M is
an encoding of γ if M contains a token in place q and the number of tokens with ages equal
to 0 in place c is equal to Val(c) for each c ∈ C. Furthermore, all other places in M are
empty.

We also use the following notion of intermediate markings. A marking is called inter-
mediate if it has a token in place r1ı (r2ı ) where ı is of the form (q, c := 0, q′) and there are
no tokens in other intermediate places and in those belonging to PQ.
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We derive N from L as described above. We define M0 to be [(qinit , 0)].

Lemma 6.2. N has an infinite non-zeno M0 = [(qinit , 0)]-computation if and only if there
exists an n ≥ 0 s.t. the LCM L has an infinite γ0 = (q0, n, 0, 0, 0)-computation.

Proof.
⇐: Let γ0 := (q0, n, 0, 0, 0) and M0 := [(qinit , 0)]. Given an infinite γ0-computation π of L,
we show that there is an infinite non-zeno M0-computation π′.

To show this, it is enough to prove the following.

(a) Starting from a marking M0 in TPN, there is a zero-time computation from M0 to a

marking M which is an encoding of γ0. In fact, M0
n

−→tı1
−→tı2

M (see Figure 18).

(b) After the initialization step, given two configurations γ, γ′ of L such that γ ❀ γ′ and
a marking M which is an encoding of γ, there is a sequence in N of the form M =
M0 −→M1 −→ · · · −→Mk = M ′ where k ≥ 1 and the following holds.
• M ′ is an encoding of γ′.
• Mi is an intermediate marking for 0 < i < k.

Since γ ❀ γ′, we know that γ′ is derived from γ, using one of the four possible types of
transitions described for LCMs. We show the claim only for the first case, namely when γ′

is derived from γ by executing an increment instruction ı. The other cases can be explained
in a similar manner. Let γ = (q,Val) and γ′ =

(

q′,Val ′
)

. Since M is an encoding of
γ, it means that place q in M contains a token. From the construction described above
(Figure 14) we know that from M , we can fire t1ı and produce a marking M1 such that
M −→t1ı

M1. M1 is obtained from M by removing the token from q and adding a token

of age 0 in r1ı . This means that both M and M1 contains exactly equal number of tokens
of age 0 at each place in PC .

Next we let time pass by one time unit and obtain a markingM1 such that M1 −→1 M1.
This means that M −→M1. Notice that all the tokens with age 0 in the places of Pc in M1

have transformed into tokens of age 1 in M1. Now, firing the transition t2ı from M1 results
in a marking M2 such that M1 −→t2ı

M2. The transition t2ı removes the token of age 1

from r1ı and adds a token of age 0 in r2ı . Here, for each place in PC , there are no tokens
with age less than 1. Furthermore, the number of tokens of age 1 in each place c′ ∈ PC is
the same in both M1 and M2. We define M2 = M2. So, M1 −→M2.

To restore the ages of the tokens of age 0 at each place in PC in the marking M0 (these
tokens correspond to the values of the counters in γ), we start a refreshment phase. Suppose
for a counter c1 ∈ PC , Val(c1) = x. Then we fire the transition ℓ1ı x times from M2 and
refresh all x tokens of age 1 in c1 to age 0. Similarly we refresh all tokens of age 1 in the
other counters in PC . Notice that we do not let time pass between these discrete transitions.

The markings M1,M2, . . ., etc. in the above are all intermediate markings. Now we fire
the transition t3ı by moving the token from r2ı to q′ and adding a token of age 0 to place
c, yielding a marking M ′. This means that for each counter c′ ∈ PC \ {c}, the number
of tokens of age 0 in c′ for M ′ is the same as that for M . Furthermore, in comparison to
marking M , there is exactly one extra token of age 0 at place c in M ′. This means that the

new marking M ′ will be an encoding of γ′ and M
∗

−→M ′.
The simulation of other operations can be explained in a similar manner.
Now, if there exists some number n s.t. the LCM has an infinite computation from

(q0, n, 0, 0, 0) then the TPN has an infinite non-zeno computation from an initial marking
that corresponds to (q0, n, 0, 0, 0). This is ensured by the initialization step and the above
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simulation of operations in LCM. The non-zenoness of the computation in TPN is ensured
by passage of time during each operation of LCM. Notice that the initialization step takes
zero-time.
⇒: Suppose that there is an infinite M0-computation π of N taking infinite time. It follows
that π must contain the transition tı2, since the initial tı1-loop takes zero time. Consider the
maximal subsequence π′ of π, where each marking in π is an encoding of some configuration
of L. The sequence π′ exists for the following reasons.

• Since π is non-zeno and infinite, the computation π is infinite even after the zeno initial-
ization step.

• Furthermore, each operation (increment, decrement, etc) takes a finite non-zero amount
of time (this follows from the constructions (see the Figures) for increment, decrement
and resetting).

From the initialization step, it is straightforward that in zero time we reach a marking
which is an encoding of γ0 = (q0, n, 0, 0, 0) for some n ≥ 0, i.e., the encoding of γ0 is
the configuration reached immediately after firing transition tı2 at the end of the initial
guessing-phase. In the following, we show that there is an infinite γ0-computation.

To prove this, it is enough to show that given two consecutive encodings M and M ′

(with only intermediate markings in between) in π′ and a configuration γ which is an

encoding of M , there is a configuration γ′ such that γ
∗
❀ γ′. Let γ = (q,Val).

Since M
∗

−→M ′ we know that there are markings M0, . . . ,Mk such that M = M0 −→
M1 −→ · · · −→Mk = M ′ where k ≥ 1 and M1, . . . ,Mk−1 are intermediate markings.

There are two cases. Either k = 1 or k > 1.
If k = 1, i.e., M −→M ′, we know that M ′ can be derived from M by firing a discrete

transition. This means that there is a marking M such that M −→t M
′ where the discrete

transition t corresponds to Figure 16.
If k > 1, then M ′ is obtained from M by firing transitions corresponding to those in

Figure 14, 15, and 17. For instance, consider that ı = (q, c++, q′) is an instruction in L,
for some counter c. From the construction of Figure 14, we know that the ages of some of
the tokens in PC may exceed 1, since not all tokens need to be refreshed. We can derive γ′

from γ by first performing loss transitions corresponding to tokens which become too old
followed by executing the instruction (q, c++, q′). Similarly, we can perform loss transitions
followed by a decrement or a reset instruction of the LCM.

Theorem 6.3. The Non-Zenoness-Problem for TPN is undecidable.

Proof. Directly from Lemma 6.2 and Theorem 6.1.

Since Non-Zenoness-Problem is the negation of the Universal Zenoness Problem, this
implies the following result.

Theorem 6.4. The Universal Zenoness Problem for TPN is undecidable.

7. Token Liveness

First, we define the liveness of a token in a marking.
Let M be a marking in a TPN N . A token in M is called syntactically k-dead if its age

is ≥ k. It is trivial to decide whether a token is k-dead from a marking.



DENSE-TIMED PETRI NETS 55

A token is called semantically live from a marking M , if we can fire a sequence of
transitions starting from M which eventually consumes the token. Formally, given a token
(p, x) and a marking M , we say that (p, x) can be consumed in M if there is a transition t
satisfying the following properties:

• t is enabled in M .
• In(t , p) is defined and x ∈ In(t , p).

Definition 7.1. A token (p, x) in a marking M is semantically live if there is a finite M -
computation π = MM1 · · ·Mr such that the aged token (p, x+ ∆(π)) can be consumed in
Mr. By L(M) we denote set of of all live tokens in M .

Note that token liveness is defined here for individual tokens, not sets of tokens. There
are nets and markings where two tokens (p, x) and (q, y) are both live, but where it is
impossible to consume both of them.

Semantic liveness of tokens in TPN

Instance: A timed Petri net N with marking M and a token (p, x) ∈M .
Question: Is (p, x) live, i.e., (p, x) ∈ L(M) ?

We show decidability of the semantic token liveness problem by reducing it to the
coverability problem for TPNs (which is decidable due to Lemma 2.12).

Coverability problem

Instance: A TPN N , a finite set of initial markings Minit of N , and an upward closed set
Mfin ↑ of markings of N , where Mfin is finite.

Question: Minit
∗

−→ Mfin ↑?

Theorem 7.2. The coverability problem is decidable for TPN [AN01].

Suppose that we are given a TPN N = (P, T, In,Out) with marking M and a token
(p, x) ∈M . We shall translate the question of whether (p, x) ∈ L(M) into (several instances
of) the coverability problem. To do that, we construct a new TPN N ′ by adding a new
place p∗ to the set P . The new place is not input or output of any transition. Either there
is no transition in N which has p as its input place. Then it is trivial that (p, x) 6∈ L(M).
Otherwise, we consider all instances of the coverability problem defined on N ′ such that

• Minit contains a single marking M − (p, x) + (p∗, x).
• Mfin is the set of markings of the form [(p1, x1), . . . , (pn, xn), (p∗, x′)] such that there is a

transition t and
- the set of input places of t is given by {p, p1, . . . , pn}.
- x′ ∈ In(t , p) and xi ∈ In(t , pi ) for each i : 1 ≤ i ≤ n.

In the construction above, we replace a token (p, x) in the initial marking by a token (p∗, x);
we also replace a token (p, x′) in the final marking where x′ ∈ In(t , p) by a token (p∗, x′).
The fact that the token in the question is not consumed in any predecessor of a marking
in Mfin, is simulated by moving the token into the place p∗ (in both the initial and final
markings), since p∗ 6∈ P and not an input or output place in N ′. Therefore, the token is
live in M of N iff the answer to the coverability problem is ’yes’.

From Theorem 7.2, we get the following.

Theorem 7.3. The token liveness problem is decidable.



56 P. A. ABDULLA, P. MAHATA, AND R. MAYR

8. Boundedness

Given a system and an initial configuration, the boundedness problem is the question
whether the size of any reachable configuration is bounded by a constant. In the context
of a TPN, this is the question whether the number of tokens in any reachable marking is
bounded.

Every marking M is a multiset of timed tokens. The size of a marking M is defined
as the size of this multiset, denoted as |M | (see Def. 2.1). In other words, |M | denotes
the number of timed tokens in M . Given a set of markings M, we define maxsize(M) :=
max{|M | |M ∈ M} as the maximal size of any marking in M.

In Section 2 we defined Reach(M0) := {M ′ |M0
∗

−→M ′} as the set of markings reach-
able from M0.

The boundedness problem for a TPN with an initial marking M0 is then the question
whether maxsize(Reach(M0)) is bounded.

Remark 8.1. Note that, unlike for normal untimed Petri nets, the boundedness problem
for TPNs is not equivalent to the question whether |Reach(M0)| is bounded. By the lazy
semantics of our TPNs (see Section 2) time can always pass and increase the values of the
clocks of the tokens. Thus (unless the initial marking is empty) one obtains infinitely many
(even uncountably many) different reachable markings, even if the number of tokens stays
constant. For example, consider a TPN with just one place p and no discrete transitions
and initial marking M0 := {(p, 0)}. Then Reach(M0) = {{(p, x)} | x ∈ R

≥0} is infinite, but
maxsize(Reach(M0)) = 1.

In this section we consider two different variants of the boundedness problem for TPNs.
In syntactic boundedness all tokens in a marking count towards its size, while in semantic
boundedness only semantically live tokens (see Section 7) count.

Syntactic Boundedness of TPN

Instance: A timed Petri net N with initial marking M0.
Question: Is maxsize(Reach(M0)) bounded ?

We give an algorithm similar to the Karp-Miller algorithm [KM69] for solving the
syntactic boundedness problem for TPNs. The algorithm builds a tree, where each node
of the tree is labeled with a region. We build the tree successively, starting from the root,
which is labeled with RM0

: the unique region satisfied by M0 (it is easy to compute this
region). At each step we pick a leaf with label R and perform one of the following operations:

(1) If Post(R) is empty we declare the current node unsuccessful and close the node.
(2) If there is a previous node on the branch which is labeled with R then declare the

current node duplicate and close the node.
(3) If there is a predecessor of the current node labeled with R′ <r R then we declare

maxsize(Reach(M0)) infinite (the TPN is unbounded), and terminate the procedure.
(4) Otherwise, declare the current node as an interior node, add a set of successors to it,

each labeled with an element in Post(R). This step is possible due to Lemma 2.11.

If the condition of step 3 is never satisfied during the construction of the tree, then we
declare maxsize(Reach(M0)) finite (the TPN is bounded).

The proof of correctness of the above algorithm is similar to that of original Karp-Miller
construction [KM69]. The termination of the algorithm is guaranteed due to the fact that
the ordering � on the set of regions is a well-quasi-ordering (follows from [Hig52]).
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Theorem 8.2. Syntactic boundedness of TPN is decidable.

A consequence of this result is that we can solve the non-termination problem for TPNs,
i.e., the problem whether a given marking M has at least one infinite run. (Remember that,
by our definition of TPN computations (see Section 2), every infinite run must contain
infinitely many discrete transitions.)

Non-Termination of TPN

Instance: A timed Petri net N , and a marking M of N .
Question: Does there exist an infinite M -computation?

A marking M is called a non-terminating marking of N iff the answer to the above
problem is ’yes’. For a given timed Petri net N we let NONTERM denote the set of the
non-terminating markings of N .

Theorem 8.3. Non-Termination of TPN is decidable.

Proof. By Theorem 8.2 we can decide syntactic boundedness. If the system is syntactically
unbounded then it is certainly non-terminating. If the system is syntactically bounded, then
all the markings in Reach(M0) can be symbolically represented by the finitely many regions
computed by the algorithm above. In this case we have non-termination iff there exists a
cyclic (and thus repeatable) path among these regions which contains at least one discrete
transition. (Cyclic paths containing only timed transitions do not induce valid infinite runs,
since we require that every infinite run contains infinitely many discrete transitions.)

This condition can easily be checked in the algorithm above as follows. If condition
(3) is true on some branch then the system is non-terminating. If some branch stops with
condition (2), then check if at least one step on the path from the previous node R to the
duplicate node R was a discrete step. If yes, then there exists a repeatable path from R to
R which contains at least one discrete transition and thus the system is non-terminating.

Since semantically dead tokens cannot influence the behavior of a TPN (see Section 7),
one would like to abstract from them.

Let N be a TPN with marking M . Then we define the live part of the TPN marking

M as Reach l(M) := {L(M ′) | M
∗

−→ M ′}, i.e, Reach l(M) is the set of reachable markings
where the semantically dead tokens have been removed.

Semantic Boundedness of TPN

Instance: A timed Petri net N with initial marking M0.
Question: Is maxsize(Reach l(M0)) bounded ?

Theorem 8.4. Semantic boundedness of TPN is undecidable.

Proof. Using slightly modified constructions of [RGdFE99] or [AN02], we can easily derive
the undecidability of semantic boundedness even for dense-timed Petri nets (see [Mah05]).
The idea is to use the same encoding of lossy counter machines (LCM) into TPN as in
Section 5 (or a similar encoding, as shown in [Mah05]). In this encoding, the semantically
live tokens (with age < 1) correspond to the counter values of the LCM while the older
(semantically dead) tokens count as lost. Thus the TPN is semantically bounded iff the
LCM is bounded. Since boundedness of LCM is undecidable [May03], the result follows.
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9. Summary and Conclusions

9.1. Problems and their Relation to each other. We considered the following sets of
markings of a given TPN.

• NONTERM , the set of markings which have an infinite run.
• NONZENO, the set of markings which have an infinite non-zeno run.
• ZENO, the set of markings which have an infinite zeno run.
• ALLZENO, the set of markings which have arbitrarily fast infinite runs.
• ZEROTIME , the set of markings which have an infinite run taking no time at all.

Note that NONZENO is not the complement of ZENO. A marking of a TPN can have
infinite zeno runs or infinite non-zeno runs or both or neither. However, NONTERM =
NONZENO ∪ ZENO .

First we consider the relationships between these sets, both for dense-timed Petri nets
and discrete-timed Petri nets.

For discrete-timed Petri nets, we trivially have ALLZENO = ZEROTIME , but for
dense-timed nets ZEROTIME ⊂ ALLZENO, in general. For example, in the TPN of
Figure 13 we have that the marking [(X, 1), (Y, 1), (A, 1), (B, 1)] ∈ ALLZENO, but the
marking [(X, 1), (Y, 1), (A, 1), (B, 1)] /∈ ZEROTIME .

For discrete-timed nets, every zeno-computation has an infinite suffix that takes no time
at all and thus Pre∗(ZEROTIME) = ZENO. However, for dense-timed Petri nets, it was
shown in Lemma 5.1 that there exist instances (e.g., Figure 13) where Pre∗(ALLZENO) ⊂
ZENO, i.e., a strict subset.

The inclusion ALLZENO ⊆ Pre∗(ALLZENO) follows directly from the definition of
Pre∗. The following example shows that there exist instances where the inclusion is strict,
i.e., ALLZENO ⊂ Pre∗(ALLZENO). (This works for both dense- and discrete time.) One
constructs a TPN and marking M0 such that at M0 one must first wait 1 time unit before
the first transition can fire. This transition then creates a marking M1 ∈ ALLZENO. Thus
M0 ∈ Pre∗(ALLZENO), but M0 /∈ ALLZENO.

Furthermore, it is trivial (for both dense- and discrete time) that ZENO ⊆ NONTERM
and NONZENO ⊆ NONTERM , and that there exist instances where these inclusions are
strict. In general, the sets ZENO and NONZENO are incomparable. Finally, ZENO ∪
NONZENO = NONTERM . The following theorem summarizes these results.

Theorem 9.1. In general for dense-timed Petri nets

ZEROTIME ⊆ ALLZENO ⊆ Pre∗(ALLZENO) ⊆ ZENO ⊆ ZENO ∪ NONZENO = NONTERM

and for each inclusion there is an instance where it is strict.
In general for discrete-timed Petri nets

ZEROTIME = ALLZENO ⊆ Pre∗(ALLZENO) = ZENO ⊆ ZENO ∪ NONZENO = NONTERM

and for each inclusion there is an instance where it is strict.

9.2. Decidability Results. It has been shown in this paper that the sets ZEROTIME ,
ALLZENO, Pre∗(ALLZENO), and ZENO are effectively constructible as MRUC (multi-
region upward closures; see Def. 2.9) for dense-timed nets and thus also for discrete-timed
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nets. Furthermore, we have shown in Section 6 that NONZENO is undecidable for dense-
timed nets. This undecidability proof carries over directly to discrete-timed nets, since all
delays are of length ≥ 1.

The situation is slightly more complex for the set NONTERM . Theorem 8.3 showed the
decidability of the non-termination problem for dense-timed nets. This decidability result
trivially carries over to discrete-timed nets. Like all the other sets of markings considered
here, the set NONTERM is closed under the relation ≡ on regions (see Def. 2.3) and it
is also upward-closed. Thus it is representable as a MRUC. However, this MRUC is not
effectively constructible. It has been shown by Escrig et al. [dFERA00] that NONTERM
is not effectively constructible even for discrete-timed Petri nets. Their proof is similar to
the construction in Section 6 (except for the initial guessing phase). A timed Petri net
can simulate a lossy counter machine (or a reset Petri net). Thus, if one could effectively
construct NONTERM , then one could decide the universal termination problem for lossy
counter machines ∃n.LCM ω (see Section 6) which is known to be undecidable [May03].

The following table summarizes the results on decidability and effective constructibility
of the considered sets of markings of TPN. Note that all those results coincide for discrete-
timed nets and dense-timed nets. However, the proofs are harder for dense-timed nets.

Set Decidable? Effectively constructible?

NONTERM Yes (Thm. 8.3) No ([dFERA00])
NONZENO No (Thm. 6.3) No (Thm. 6.3)
ZENO Yes (Thm. 3.42) Yes (Thm. 3.42)
Pre∗(ALLZENO) Yes (Thm. 5.8 and Lemma 2.12) Yes (Thm. 5.8 and Lemma 2.12)
ALLZENO Yes (Thm. 5.8) Yes (Thm. 5.8)
ZEROTIME Yes (Thm. 5.12) Yes (Thm. 5.12)

9.3. Conclusion and Future Work. We have solved several open problems about the
verification of dense-timed Petri nets (TPNs) in which each token has an age represented
by a real number, where the transitions are constrained by the ages of the tokens and the
firing semantics is lazy. This class is closely related to the class of parameterized systems
of timed processes where each process is restricted to have a single clock [AJ03].

We have shown decidability of zenoness, existence of arbitrarily fast computations,
token-liveness and syntactic boundedness for TPNs, as well as the undecidability of universal
zenoness.

To solve the zenoness problem, we defined a new class of untimed Petri nets (SD-TN)
which is more general than standard Petri nets, but which is a subclass of transfer nets.
For these SD-TN, we gave a method to compute a characterization of the set of markings
from which there are infinite computations. This is interesting in itself, since for general
transfer nets such a characterization is not computable [DJS99, May03].

We have considered TPNs with just one real-valued clock per token. For all the problems
studied so far, the decidability results coincide for dense-time and discrete-time (although
the proofs for dense-time are harder).

However, if we consider TPNs with two clocks per token, there is a decidability gap
between the dense-time and the discrete-time domain. The coverability problem becomes
undecidable for dense-timed TPNs with only two clocks per token, while it remains decidable
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for discrete-timed TPNs with any finite number of clocks per token [ADM04]. The class of
TPNs with multiple clocks per token is related to parameterized systems of timed processes,
with multiple clocks per process [ADM04]. It is therefore worth investigating whether this
more general class induces a similar gap for the problems we have considered in this paper.
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