707 research outputs found

    VOCAL BIOMARKERS OF CLINICAL DEPRESSION: WORKING TOWARDS AN INTEGRATED MODEL OF DEPRESSION AND SPEECH

    Get PDF
    Speech output has long been considered a sensitive marker of a person’s mental state. It has been previously examined as a possible biomarker for diagnosis and treatment response for certain mental health conditions, including clinical depression. To date, it has been difficult to draw robust conclusions from past results due to diversity in samples, speech material, investigated parameters, and analytical methods. Within this exploratory study of speech in clinically depressed individuals, articulatory and phonatory behaviours are examined in relation to psychomotor symptom profiles and overall symptom severity. A systematic review provided context from the existing body of knowledge on the effects of depression on speech, and provided context for experimental setup within this body of work. Examinations of vowel space, monophthong, and diphthong productions as well as a multivariate acoustic analysis of other speech parameters (e.g., F0 range, perturbation measures, composite measures, etc.) are undertaken with the goal of creating a working model of the effects of depression on speech. Initial results demonstrate that overall vowel space area was not different between depressed and healthy speakers, but on closer inspection, this was due to more specific deficits seen in depressed patients along the first formant (F1) axis. Speakers with depression were more likely to produce centralised vowels along F1, as compared to F2—and this was more pronounced for low-front vowels, which are more complex given the degree of tongue-jaw coupling required for production. This pattern was seen in both monophthong and diphthong productions. Other articulatory and phonatory measures were inspected in a factor analysis as well, suggesting additional vocal biomarkers for consideration in diagnosis and treatment assessment of depression—including aperiodicity measures (e.g., higher shimmer and jitter), changes in spectral slope and tilt, and additive noise measures such as increased harmonics-to-noise ratio. Intonation was also affected by diagnostic status, but only for specific speech tasks. These results suggest that laryngeal and articulatory control is reduced by depression. Findings support the clinical utility of combining Ellgring and Scherer’s (1996) psychomotor retardation and social-emotional hypotheses to explain the effects of depression on speech, which suggest observed changes are due to a combination of cognitive, psycho-physiological and motoric mechanisms. Ultimately, depressive speech is able to be modelled along a continuum of hypo- to hyper-speech, where depressed individuals are able to assess communicative situations, assess speech requirements, and then engage in the minimum amount of motoric output necessary to convey their message. As speakers fluctuate with depressive symptoms throughout the course of their disorder, they move along the hypo-hyper-speech continuum and their speech is impacted accordingly. Recommendations for future clinical investigations of the effects of depression on speech are also presented, including suggestions for recording and reporting standards. Results contribute towards cross-disciplinary research into speech analysis between the fields of psychiatry, computer science, and speech science

    Sound structure and sound change: A modeling approach

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations. The methodological focus of this work is on computational modeling. By formalising and implementing theoretical accounts, modeling can expose theoretical gaps and covert assumptions. To do so, it is necessary to formally assess the functional equivalence of specific implementational choices, as well as their mapping to theoretical structures. This book applies this analytic approach to a series of implemented models of sound change. As theoretical inconsistencies are discovered, possible solutions are proposed, incrementally constructing a set of sufficient properties for a working model. Because internal theoretical consistency is enforced, this model corresponds to an explanatorily adequate theory. And because explicit links between modules are required, this is a theory, not only of sound change, but of many aspects of phonological competence. The book highlights two aspects of modeling work that receive relatively little attention: the formal mapping from model to theory, and the scalability of demonstration models. Focusing on these aspects of modeling makes it clear that any theory of sound change in the specific is impossible without a more general theory of language: of the relationship between perception and production, the relationship between phonetics and phonology, the learning of linguistic units, and the nature of underlying representations. Theories of sound change that do not explicitly address these aspects of language are making tacit, untested assumptions about their properties. Addressing so many aspects of language may seem to complicate the linguist's task. However, as this book shows, it actually helps impose boundary conditions of ecological validity that reduce the theoretical search space

    Sound structure and sound change: A modeling approach

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations. The methodological focus of this work is on computational modeling. By formalising and implementing theoretical accounts, modeling can expose theoretical gaps and covert assumptions. To do so, it is necessary to formally assess the functional equivalence of specific implementational choices, as well as their mapping to theoretical structures. This book applies this analytic approach to a series of implemented models of sound change. As theoretical inconsistencies are discovered, possible solutions are proposed, incrementally constructing a set of sufficient properties for a working model. Because internal theoretical consistency is enforced, this model corresponds to an explanatorily adequate theory. And because explicit links between modules are required, this is a theory, not only of sound change, but of many aspects of phonological competence. The book highlights two aspects of modeling work that receive relatively little attention: the formal mapping from model to theory, and the scalability of demonstration models. Focusing on these aspects of modeling makes it clear that any theory of sound change in the specific is impossible without a more general theory of language: of the relationship between perception and production, the relationship between phonetics and phonology, the learning of linguistic units, and the nature of underlying representations. Theories of sound change that do not explicitly address these aspects of language are making tacit, untested assumptions about their properties. Addressing so many aspects of language may seem to complicate the linguist's task. However, as this book shows, it actually helps impose boundary conditions of ecological validity that reduce the theoretical search space

    Sound structure and sound change: A modeling approach

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations. The methodological focus of this work is on computational modeling. By formalising and implementing theoretical accounts, modeling can expose theoretical gaps and covert assumptions. To do so, it is necessary to formally assess the functional equivalence of specific implementational choices, as well as their mapping to theoretical structures. This book applies this analytic approach to a series of implemented models of sound change. As theoretical inconsistencies are discovered, possible solutions are proposed, incrementally constructing a set of sufficient properties for a working model. Because internal theoretical consistency is enforced, this model corresponds to an explanatorily adequate theory. And because explicit links between modules are required, this is a theory, not only of sound change, but of many aspects of phonological competence. The book highlights two aspects of modeling work that receive relatively little attention: the formal mapping from model to theory, and the scalability of demonstration models. Focusing on these aspects of modeling makes it clear that any theory of sound change in the specific is impossible without a more general theory of language: of the relationship between perception and production, the relationship between phonetics and phonology, the learning of linguistic units, and the nature of underlying representations. Theories of sound change that do not explicitly address these aspects of language are making tacit, untested assumptions about their properties. Addressing so many aspects of language may seem to complicate the linguist's task. However, as this book shows, it actually helps impose boundary conditions of ecological validity that reduce the theoretical search space

    Sound structure and sound change: A modeling approach

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations. The methodological focus of this work is on computational modeling. By formalising and implementing theoretical accounts, modeling can expose theoretical gaps and covert assumptions. To do so, it is necessary to formally assess the functional equivalence of specific implementational choices, as well as their mapping to theoretical structures. This book applies this analytic approach to a series of implemented models of sound change. As theoretical inconsistencies are discovered, possible solutions are proposed, incrementally constructing a set of sufficient properties for a working model. Because internal theoretical consistency is enforced, this model corresponds to an explanatorily adequate theory. And because explicit links between modules are required, this is a theory, not only of sound change, but of many aspects of phonological competence. The book highlights two aspects of modeling work that receive relatively little attention: the formal mapping from model to theory, and the scalability of demonstration models. Focusing on these aspects of modeling makes it clear that any theory of sound change in the specific is impossible without a more general theory of language: of the relationship between perception and production, the relationship between phonetics and phonology, the learning of linguistic units, and the nature of underlying representations. Theories of sound change that do not explicitly address these aspects of language are making tacit, untested assumptions about their properties. Addressing so many aspects of language may seem to complicate the linguist's task. However, as this book shows, it actually helps impose boundary conditions of ecological validity that reduce the theoretical search space

    Sound structure and sound change: A modeling approach

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations. The methodological focus of this work is on computational modeling. By formalising and implementing theoretical accounts, modeling can expose theoretical gaps and covert assumptions. To do so, it is necessary to formally assess the functional equivalence of specific implementational choices, as well as their mapping to theoretical structures. This book applies this analytic approach to a series of implemented models of sound change. As theoretical inconsistencies are discovered, possible solutions are proposed, incrementally constructing a set of sufficient properties for a working model. Because internal theoretical consistency is enforced, this model corresponds to an explanatorily adequate theory. And because explicit links between modules are required, this is a theory, not only of sound change, but of many aspects of phonological competence. The book highlights two aspects of modeling work that receive relatively little attention: the formal mapping from model to theory, and the scalability of demonstration models. Focusing on these aspects of modeling makes it clear that any theory of sound change in the specific is impossible without a more general theory of language: of the relationship between perception and production, the relationship between phonetics and phonology, the learning of linguistic units, and the nature of underlying representations. Theories of sound change that do not explicitly address these aspects of language are making tacit, untested assumptions about their properties. Addressing so many aspects of language may seem to complicate the linguist's task. However, as this book shows, it actually helps impose boundary conditions of ecological validity that reduce the theoretical search space

    Sound structure and sound change: A modeling approach

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations. The methodological focus of this work is on computational modeling. By formalising and implementing theoretical accounts, modeling can expose theoretical gaps and covert assumptions. To do so, it is necessary to formally assess the functional equivalence of specific implementational choices, as well as their mapping to theoretical structures. This book applies this analytic approach to a series of implemented models of sound change. As theoretical inconsistencies are discovered, possible solutions are proposed, incrementally constructing a set of sufficient properties for a working model. Because internal theoretical consistency is enforced, this model corresponds to an explanatorily adequate theory. And because explicit links between modules are required, this is a theory, not only of sound change, but of many aspects of phonological competence. The book highlights two aspects of modeling work that receive relatively little attention: the formal mapping from model to theory, and the scalability of demonstration models. Focusing on these aspects of modeling makes it clear that any theory of sound change in the specific is impossible without a more general theory of language: of the relationship between perception and production, the relationship between phonetics and phonology, the learning of linguistic units, and the nature of underlying representations. Theories of sound change that do not explicitly address these aspects of language are making tacit, untested assumptions about their properties. Addressing so many aspects of language may seem to complicate the linguist's task. However, as this book shows, it actually helps impose boundary conditions of ecological validity that reduce the theoretical search space

    Sound structure and sound change: A modeling approach

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations. The methodological focus of this work is on computational modeling. By formalising and implementing theoretical accounts, modeling can expose theoretical gaps and covert assumptions. To do so, it is necessary to formally assess the functional equivalence of specific implementational choices, as well as their mapping to theoretical structures. This book applies this analytic approach to a series of implemented models of sound change. As theoretical inconsistencies are discovered, possible solutions are proposed, incrementally constructing a set of sufficient properties for a working model. Because internal theoretical consistency is enforced, this model corresponds to an explanatorily adequate theory. And because explicit links between modules are required, this is a theory, not only of sound change, but of many aspects of phonological competence. The book highlights two aspects of modeling work that receive relatively little attention: the formal mapping from model to theory, and the scalability of demonstration models. Focusing on these aspects of modeling makes it clear that any theory of sound change in the specific is impossible without a more general theory of language: of the relationship between perception and production, the relationship between phonetics and phonology, the learning of linguistic units, and the nature of underlying representations. Theories of sound change that do not explicitly address these aspects of language are making tacit, untested assumptions about their properties. Addressing so many aspects of language may seem to complicate the linguist's task. However, as this book shows, it actually helps impose boundary conditions of ecological validity that reduce the theoretical search space

    Sound structure and sound change

    Get PDF
    Research in linguistics, as in most other scientific domains, is usually approached in a modular way – narrowing the domain of inquiry in order to allow for increased depth of study. This is necessary and productive for a topic as wide-ranging and complex as human language. However, precisely because language is a complex system, tied to perception, learning, memory, and social organization, the assumption of modularity can also be an obstacle to understanding language at a deeper level. This book examines the consequences of enforcing non-modularity along two dimensions: the temporal, and the cognitive. Along the temporal dimension, synchronic and diachronic domains are linked by the requirement that sound changes must lead to viable, stable language states. Along the cognitive dimension, sound change and variation are linked to speech perception and production by requiring non-trivial transformations between acoustic and articulatory representations

    Speech Communication

    Get PDF
    Contains research objectives and summary of research on six research projects and reports on three research projects.National Institutes of Health (Grant 5 RO1 NS04332-13)National Institutes of Health (Fellowship 1 F22 MH5825-01)National Institutes of Health (Grant 1 T32 NS07040-01)National Institutes of Health (Fellowship 1 F22 NS007960)National Institutes of Health (Fellowship 1 F22 HD019120)National Institutes of Health (Fellowship 1 F22 HD01919-01)U. S. Army (Contract DAAB03-75-C-0489)National Institutes of Health (Grant 5 RO1 NS04332-12
    • …
    corecore