42,160 research outputs found

    The Replacement Bootstrap for Dependent Data

    Get PDF
    International audienceApplications that deal with time-series data often require evaluating complex statistics for which each time series is essentially one data point. When only a few time series are available, bootstrap methods are used to generate additional samples that can be used to evaluate empirically the statistic of interest. In this work a novel bootstrap method is proposed, which is shown to have some asymptotic consistency guarantees under the only assumption that the time series are stationary and ergodic. This contrasts previously available results that impose mixing or finite-memory assumptions on the data. Empirical evaluation on simulated and real data, using a practically relevant and complex extrema statistic is provided

    Statistical inference using SGD

    Full text link
    We present a novel method for frequentist statistical inference in MM-estimation problems, based on stochastic gradient descent (SGD) with a fixed step size: we demonstrate that the average of such SGD sequences can be used for statistical inference, after proper scaling. An intuitive analysis using the Ornstein-Uhlenbeck process suggests that such averages are asymptotically normal. From a practical perspective, our SGD-based inference procedure is a first order method, and is well-suited for large scale problems. To show its merits, we apply it to both synthetic and real datasets, and demonstrate that its accuracy is comparable to classical statistical methods, while requiring potentially far less computation.Comment: To appear in AAAI 201

    Bootstrap for U-Statistics: A new approach

    Get PDF
    Bootstrap for nonlinear statistics like U-statistics of dependent data has been studied by several authors. This is typically done by producing a bootstrap version of the sample and plugging it into the statistic. We suggest an alternative approach of getting a bootstrap version of U-statistics, which can be described as a compromise between bootstrap and subsampling. We will show the consistency of the new method and compare its finite sample properties in a simulation study

    A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics

    Get PDF
    Efron (1979) introduced the bootstrap method for independent data but it cannot be easily applied to spatial data because of their dependency. For spatial data that are correlated in terms of their locations in the underlying space the moving block bootstrap method is usually used to estimate the precision measures of the estimators. The precision of the moving block bootstrap estimators is related to the block size which is difficult to select. In the moving block bootstrap method also the variance estimator is underestimated. In this paper, first the semi-parametric bootstrap is used to estimate the precision measures of estimators in spatial data analysis. In the semi-parametric bootstrap method, we use the estimation of the spatial correlation structure. Then, we compare the semi-parametric bootstrap with a moving block bootstrap for variance estimation of estimators in a simulation study. Finally, we use the semi-parametric bootstrap to analyze the coal-ash data
    corecore