38 research outputs found

    The relational model is injective for Multiplicative Exponential Linear Logic (without weakenings)

    Get PDF
    We show that for Multiplicative Exponential Linear Logic (without weakenings) the syntactical equivalence relation on proofs induced by cut-elimination coincides with the semantic equivalence relation on proofs induced by the multiset based relational model: one says that the interpretation in the model (or the semantics) is injective. We actually prove a stronger result: two cut-free proofs of the full multiplicative and exponential fragment of linear logic whose interpretations coincide in the multiset based relational model are the same "up to the connections between the doors of exponential boxes".Comment: 36 page

    The relational model is injective for Multiplicative Exponential Linear Logic

    Get PDF
    We prove a completeness result for Multiplicative Exponential Linear Logic (MELL): we show that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-nets in the relational model is exactly axiomatized by cut-elimination.Comment: 33 page

    Injectivity of relational semantics for (connected) MELL proof-nets via Taylor expansion

    Get PDF
    International audienceWe show that: (1) the Taylor expansion of a cut-free MELL proof-structure R with atomic axioms is the (most informative part of the) relational semantics of R; (2) every (connected) MELL proof-net is uniquely determined by the element of order 2 of its Taylor expansion; (3) the relational semantics is injective for (connected) MELL proof-nets

    Taylor expansion in linear logic is invertible

    Full text link
    Each Multiplicative Exponential Linear Logic (MELL) proof-net can be expanded into a differential net, which is its Taylor expansion. We prove that two different MELL proof-nets have two different Taylor expansions. As a corollary, we prove a completeness result for MELL: We show that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-nets in the relational model is exactly axiomatized by cut-elimination

    Glueability of Resource Proof-Structures: Inverting the Taylor Expansion

    Get PDF
    A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures

    Proof-Net as Graph, Taylor Expansion as Pullback

    Get PDF
    We introduce a new graphical representation for multiplicative and exponential linear logic proof-structures, based only on standard labelled oriented graphs and standard notions of graph theory. The inductive structure of boxes is handled by means of a box-tree. Our proof-structures are canonical and allows for an elegant definition of their Taylor expansion by means of pullbacks

    A semantic account of strong normalization in Linear Logic

    Full text link
    We prove that given two cut free nets of linear logic, by means of their relational interpretations one can: 1) first determine whether or not the net obtained by cutting the two nets is strongly normalizable 2) then (in case it is strongly normalizable) compute the maximal length of the reduction sequences starting from that net.Comment: 41 page

    On the discriminating power of tests in resource lambda-calculus

    Get PDF
    Since its discovery, differential linear logic (DLL) inspired numerous domains. In denotational semantics, categorical models of DLL are now commune, and the simplest one is Rel, the category of sets and relations. In proof theory this naturally gave birth to differential proof nets that are full and complete for DLL. In turn, these tools can naturally be translated to their intuitionistic counterpart. By taking the co-Kleisly category associated to the ! comonad, Rel becomes MRel, a model of the \Lcalcul that contains a notion of differentiation. Proof nets can be used naturally to extend the \Lcalcul into the lambda calculus with resources, a calculus that contains notions of linearity and differentiations. Of course MRel is a model of the \Lcalcul with resources, and it has been proved adequate, but is it fully abstract? That was a strong conjecture of Bucciarelli, Carraro, Ehrhard and Manzonetto. However, in this paper we exhibit a counter-example. Moreover, to give more intuition on the essence of the counter-example and to look for more generality, we will use an extension of the resource \Lcalcul also introduced by Bucciarelli et al for which \Minf is fully abstract, the tests
    corecore