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a b s t r a c t

We show that for Multiplicative Exponential Linear Logic (without weakenings) the
syntactical equivalence relation on proofs induced by cut-elimination coincides with the
semantic equivalence relation on proofs induced by the multiset based relational model:
one says that the interpretation in the model (or the semantics) is injective. We actually
prove a stronger result: two cut-free proofs of the full multiplicative and exponential
fragment of linear logic whose interpretations coincide in the multiset based relational
model are the same ‘‘up to the connections between the doors of exponential boxes’’.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Separation is an important mathematical property, and several theorems are often referred to as ‘‘separation theorems’’.
In theoretical computer science, one of themostwell-known examples of separation theorem is Böhm’s theorem [2] for pure
λ-calculus: if t, t ′ are two distinct closed βη-normal terms, then there exists a context C[ ] s.t. C[t] ≃β 0 and C[t ′] ≃β 1.
Such a result induces an order relation (i.e. a T0 topology) on the βη-equivalence classes of (normalizable) λ-terms. Later on,
this kind of question has been studied by Friedman and Statman for the simply typedλ-calculus [29], leading towhat is often
called ‘‘typed Böhm’s theorem’’ (see also [17,11] for sharper formulations). We believe that if no other result of this kind has
been produced for a long time, it is due to the absence of interesting logical systems where proofs could be represented in
a nice ‘‘canonical’’ way.

The situation radically changed in the nineties, mainly due to Linear Logic (LL [13]), a refinement of intuitionistic (and
classical) logic characterized by the introduction of new connectives (the exponentials) which give a logical status to the
operations of erasing and copying (corresponding to the structural rules of logic): this change of viewpoint had striking
consequences in proof-theory, like the introduction of proof-nets, a geometric way of representing computations. In the
framework of proof-nets, the separation property can be studied: the first work on the subject is [20] where the authors
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deal with the translation in LL of the pure λ-calculus; it is a key property of ludics [14] and has been studied more recently
for the intuitionistic multiplicative fragment of LL [21] and for differential nets [24]. For Parigot’s λµ-calculus, see [5,28].

Still in LL’s framework, a semantic approach to the question of separation is developed in [9,10], where the (very natural)
question of ‘‘injectivity’’ of the semantics is addressed: do the equivalence relation on proofs defined by the cut-elimination
procedure and the one defined by a given denotational model (sometimes/always) coincide? When the answer is positive
one says that the model is injective (it separates syntactically different proofs). Indeed, two proofs are ‘‘syntactically’’
equivalent when (roughly speaking) they have the same cut-free form (in a confluent and weakly normalizing system), and
they are ‘‘semantically’’ equivalent in a given denotational model (a semantics of proofs in logical terms) when they have
the same interpretation. It is worth noticing that the study of both these equivalence relations is at the heart of the whole
research area between proof-theory and theoretical computer science: on the one hand, cut-elimination is a crucial property
of logical systems since Gentzen. In the second part of last century, there was a renewal of interest in this property after
the discovery of the Curry–Howard correspondence: a proof is a programwhose execution corresponds to applying the cut-
elimination procedure to the proof. On the other hand, the general goal of denotational semantics is to give a ‘‘mathematical’’
counterpart to syntactical devices such as proofs and programs, bringing to the fore their essential properties: the basic
pattern is to associate with every formula/type an object of some category and with every proof/program a morphism of
this category (its interpretation). In the theoretical computer science tradition, once a notion of ‘‘value’’ is defined, one often
wants to consider that two programs are equivalent when whatever context one chooses, the two programs are either both
non-correct or they are both correct and yield the same value: this equivalence is then called ‘‘observational equivalence’’.
When the semantic equivalence in a givenmodel coincides with observational equivalence, one says that themodel is ‘‘fully
abstract’’. Full abstraction is among the most studied properties of theoretical computer science in the last decades. In LL,
if one considers cut-free proof-nets as values, the syntactic equivalence relation is observational equivalence, and a model
is injective precisely when it is fully abstract. To be more precise, in an untyped framework one should also have that two
proof-nets with the same interpretation are either both normalizable1 or both non-normalizable: in the relational model
this is a consequence of the semantic characterization of normalizable proof-nets given in [6].

The works [9,10] give partial results and counterexamples to the question of injectivity, mainly for the (multiset based)
coherent model: in particular the counterexamples show that this model is not injective for multiplicative and exponential
LL (MELL). Also, it was conjectured that the (multiset based) relational model is injective forMELL, but despite many efforts
[9], [10], [3], [25], [24], [26]... all the attempts to prove the conjecture failed up to now: no real progress has been done
since [10], where a proof of injectivity of the relational model is given for a fragment of MELL.2 Game semantics is much
closer to syntax than relational and coherent semantics, and positive answers have been obtained for little fragments like
the multiplicative fragmentMLL or the fragment corresponding to the λ-calculus [1,16], but also for the polarized fragment
of LL [19].

We prove here that forMELLwithoutweakenings (andwithout themultiplicative unit⊥) relational semantics is injective
(Corollary 55). This tremendous improvementwith respect to the previous situation is an immediate consequence of amuch
stronger result: in the fullMELL fragment (with units) two proof-nets R and R′ with the same interpretation are the same ‘‘up
to the connections between the doors of exponential boxes’’ (we say they have the same LPS: Theorem 50 and Corollary 52).
This result can be expressed in terms of differential nets [12]: two cut-free proof-nets with different LPS have different
Taylor expansions. We also believe this work is an essential step towards the proof of the full conjecture.

In the style of [8,6] wework in an untyped framework; we do not define proof-nets nor cut-elimination but only cut-free
proof-structures (PS, Definition 17): we prove that two PS with the same interpretation have the same LPS (Corollary 52). A
proof-net (as defined in [6]) is a particular case of PS so that the result holds for untyped (so as for typed) MELL proof-nets
(Remark 56).

Since we want to prove that two PS are isomorphic in Theorem 50, it is mandatory to have a (simple and clear) notion
of isomorphism between PS (Definition 19), and this is why in Section 2 we give a very sharp description of the syntax in
the style of interaction nets [18,22]: we cannot only rely on a graphic intuition. The notion of Linear Proof-Structure (LPS),
which comes from [10], is our main syntactical tool: with every proof-net R of (say) [6] is associated a LPS, which is obtained
from R by forgetting some information about R’s exponential boxes, namely which auxiliary doors correspond to which
!-link (using standard LL’s terminology); this is particularly clear in Definition 17 of PS: a PS is a LPS and a function allowing
to recover boxes. Recovering this function from the interpretation of a PS is the only missing point in the proof of the full
conjecture, but a simple remark shows that the function can be recovered from the LPS when the PS is a connected graph:
this yields injectivity forMELL without weakenings and ⊥ (Corollary 55).

In Section 3, we introduce a domain D to interpret PS which is essentially the one already defined in [6]. Like in [10],
we use here experiments (introduced in [13]) which can be thought as objects in between syntax and semantics and are
related to type derivations in the λ-calculus [7]. Experiments are functions defined on proof-nets allowing to compute
the interpretation pointwise: the set of results of all the experiments of a given proof-net is its interpretation.3 Usually

1 We mean that it is possible to apply the cut-elimination procedure to both the proof-nets and obtain a cut-free proof-net.
2 Precisely, for the (?℘)LL fragment given by A ::= X | ?A℘A | A℘?A | A℘A | A ⊗ A | !A .
3 The result of an experiment e is the image of the conclusions of the proof-net through the function e; so that contrary to an experiment its result is a

truly semantic object.
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an experiment e of a proof-net R is a labeling of R at depth 0 and a function associating with every !-link l of R a set of
experiments of the content of the box associated with l. We noticed that a particular kind of experiment called k-experiment
(Definition 35) can be defined directly on LPS (boxes are not needed).

In Section 4, we state our results and reduce the problem of injectivity to Proposition 40, which is proven in Section 5.
The paper ends with a technical appendix, containing some obvious definitions and the formal details of some

constructions previously used.
In [10], a single (well-chosen!) point of the interpretation of a proof-net allowed to ‘‘rebuild’’ the entire proof-net (in

some particular cases and for coherent semantics). Something similar happens in this paper, with a notable difference that
makes everything much more complicated: in [10] the well-chosen point of the interpretation of a proof-net allowed not
only to rebuild the proof-net but also the experiment having this point as result. This is not the case here, where the well-
chosen points of the interpretation of a PS are atomic injective k-points (Definition 22): we show (see Example 28 and Fig. 2)
that there exist different experiments having as result the same atomic injective k-point. Let us conclude bymentioning the
main novelties in our proof.

• We use injective experiments in a completely different sense than in [10]: intuitively, our injective k-experiments
associate with an axiom link with depth d, kd different labels, while the injective k-obsessional experiments of [10]
associate a unique label with such an axiom link (see Remark 23). A crucial aspect of our new injective k-experiments is
that they can be recognized by their results (Definition 22), and this was not the case for relational injective k-obsessional
experiments.

• We define some kind of ‘‘prototype’’ of injective atomic k-experiments: the notion of injective atomic k-experiment
of LPS (Definitions 35 and 36). It is true that the two experiments of the PS of Fig. 2 previously mentioned (see again
Example 28 for the details) are different, but we would like to consider them as ‘‘the same’’ experiment: any atomic
injective k-experiment of a given LPS Φ , allows to generate the set of injective atomic k-points of the interpretation of
every PS having Φ as LPS (Fact 48).

• We consider the results of experiments after forgetting the names of the atoms (see again Fact 48): two experiments
having as results injective and atomic k-points that are the same ‘‘up to the names of the atoms’’ might not be the same
experiment, but they are necessarily experiments of two PS having the same LPS (Proposition 40).

Summing up, we show that if the interpretation of the PS R contains an atomic injective k-point, then every R′ with the
same interpretation as R has the same LPS as R (Corollary 52); and contrary to [10] we do not know the experiment which
produced this point.

Conventions. We use the notation [ ] for multisets while the notation { } is, as usual, for sets. For any set A, we denote
by Mfin(A) the set of finite multisets a whose support, denoted by Supp(a), is a subset of A. The pairwise union of multisets
given by term-by-term addition ofmultiplicities is denoted by a+ sign and, following this notation, the generalized union is
denoted by a


sign. The neutral element for this operation, the empty multiset, is denoted by [ ]. For k ∈ N and amultiset,

we denote by k · a the multiset defined by Supp(k · a) = Supp(a) and for every α ∈ Supp(a), (k · a)(α) = ka(α).
For any k ∈ N, we set pkq = {1, . . . , k}. For any set A, we denote by A<ω the set of finite sequences of elements of A, by

P(A) the powerset of A, by Pfin(A) the finite powerset of A and by P2(A) the set {{a, b} ∈ P(A) | a, b ∈ A and a ≠ b}. A
function f : A → B has domain A = dom(f ), codomain B = codom(f ), image im(f ) = {f (a) | a ∈ A}; we denote by f

B′

A′

the restriction of f to the domain A′ and to the codomain B′ and by P(f ) the function P(A) → P(B) which associates with
every X ⊆ A the set {f (x) | x ∈ X}. We denote by ε the unique element of pkq0 for any k ∈ N and by A ⊎ B the disjoint union
of the sets A and B.

2. Syntax

This section is devoted to present in full details the syntactical objects for which we prove our main result: proof-
structures (Definition 17).We adopt the interaction nets point of view and pass through intermediate objects: cells and ports
(Section 2.1), Pre-Linear Proof-Structures (Section 2.2), Linear Proof-Structures (Section 2.3), Proof-Structures (Section 2.4).
Cells come with a notion of isomorphism which is then adapted to its refinements; isomorphisms between Linear Proof-
Structures and Proof-Structures will be crucial to prove the results presented in the paper (see for example Proposition 40
and Theorem 50).

2.1. Cells and ports

We introduce cells and ports, which intuitively correspond to ‘‘links with their premises and conclusions’’ in the theory
of linear logic proof-nets ([13,4,9], . . . ). Our presentation is in the style of interaction nets [18,22], where principal (resp.
auxiliary) ports correspond to the conclusions (resp. the premises) of the links and axiom links of the usual syntax become
wires (seeDefinition 7).Wedealwith (the analogue of) unary !-links,while ?-links can have an arbitrary number of premises.
More precisely, we set T = {⊗,M, 1, ⊥, !, ?} and we define Cells as follows.
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Definition 1. A cell base is a 6-tuple C = (t, P ,C, Ppri, Pleft,#) such that
• t is a function such that dom(t) is finite and codom(t) = T ; the elements of dom(t) are the cells of C;
• P is a finite set whose elements are the ports of C;
• C is a surjection P → dom(t) such that for any l ∈ dom(t), we have

• t(l) ∈ {⊗,M} ⇒ Card({p ∈ P | C(p) = l}) = 3;
• t(l) = ! ⇒ Card({p ∈ P | C(p) = l}) = 2;
• and t(l) ∈ {1, ⊥} ⇒ Card({p ∈ P | C(p) = l}) = 1;
the set {p ∈ P | C(p) = l} is the set of the ports of l;

• Ppri is a function dom(t) → P such that C ◦ Ppri
= iddom(t); the port Ppri(l) is the principal port of l. A port of l different

from Ppri(l) is an auxiliary port of l;
• Pleft is a function Cm

→ P such that Pleft(l) is an auxiliary port of l, where Cm
= {l ∈ dom(t) | t(l) ∈ {⊗,M}};

• # is a function


l∈C?{p ∈ P \ {Ppri(l)} | C(p) = l} → N, where C? is the set {l ∈ dom(t) | t(l) = ?}.
We denote by Cells the set of cell bases.

Notations 2. Let C ∈ Cells. We set C(C) = dom(t), tC = t, P (C) = P , CC = C, Ppri
C = Ppri, Pleft

C = Pleft and #C = #.
Moreover, for any t ∈ T , we define the setCt(C) by settingCt(C) = {l ∈ C(C)|tC(l) = t}.We setCm(C) = C⊗(C)∪CM(C).

Remark 3. (i) Intuitively, C ∈ Cells corresponds to what is called ‘‘a set of links’’ in the usual syntax of [10]. Notice that the
functions Ppri and Pleft of Definition 1 induce the functions Paux

C : C(C) → P(P (C)) and Pright
C : Cm(C) → P (C) defined

by Paux
C (l) = {p ∈ P (C) \ {Ppri

C (l)} | CC(p) = l} and by {Pright
C (l)} = Paux

C (l) \ {Pleft
C (l)}: the functions Ppri

C and Paux
C allow to

distinguish the principal ports (conclusions in [10]) from the auxiliary ports (premises in [10]), while for multiplicative cells
the functions Pleft

C and Pright
C allow to distinguish the left auxiliary port (left premise in [10]) from the right one.We denote by

P pri(C) (resp. P aux(C)) the set of principal (resp. auxiliary) ports of C. Moreover, we denote by aC the function C(C) → N
defined by aC(l) = Card(Paux

C (l)); the integer aC(l) is the arity of l.
(ii) There is however a notable difference w.r.t. [18] in the way we handle boxes in our PS (Definition 17): here the

function # plays a crucial role. If p ∈ Paux
C (l) for some l ∈ C?(C), then the integer #C(p) is in the syntax of [10] the number of

auxiliary doors of boxes of the exponential branch corresponding to p. For instance, for the C in Fig. 2, we have #C(p1) = 0
and #C(p2) = 1. In the spirit of LL, we split the set C?(C) into the four following disjoint sets:

• C?w(C) = {l ∈ C?(C) | aC(l) = 0} which (in [10]) corresponds to the set of weakening links of C
• C?d(C) = {l ∈ C?(C) | aC(l) = 1 and #C(p) = 0, where {p} = Paux

C (l)}, which (in [10]) corresponds to the set of
dereliction links of C

• C?cb(C) = {l ∈ C?(C) | aC(l) > 1 and (∃p ∈ Paux
C (l)) #C(p) = 0}, which (in [10]) corresponds to the set of contraction

links of C having at least the conclusion of one dereliction link among their premises
• C?cauxd(C) = {l ∈ C?(C) | aC(l) ≥ 1 and (∀p ∈ Paux

C (l))#C(p) > 0}, which (in [10]) corresponds to the set of contraction
links having only conclusions of auxiliary doors of boxes among their premises.

The auxiliary ports of the ?-cells of C are the ports belonging to the set Aux?(C) =


l∈C?(C) P
aux
C (l), while the auxiliary doors

of C are the elements of Auxdoors(C) = {p ∈ Aux?(C) | #C(p) > 0}.

Definition 4. Let C, C′
∈ Cells and let ϕ = (ϕC, ϕP ) be a pair of bijections with ϕC : C(C) → C(C′) and ϕP : P (C) →

P (C′). For writing ϕ : C ≃ C′, we require that the following diagrams commute:

C(C)
Ppri

C✲ P (C)
CC✲ C(C)

tC ✲ T Cm(C)
Pleft

C✲ P (C)

C(C′)

ϕC

❄

Ppri
C′

✲ P (C′)

ϕP

❄

CC′

✲ C(C′)

ϕC

❄
t C

′

✲

Cm(C′)

ϕC

Cm(C′)

Cm(C)

❄

Pleft
C′

✲ P (C′)

ϕP

❄

If these diagrams commute, then we have im(ϕP Aux?(C)) = Aux?(C′). Hence we can consider ϕ′
= ϕP

Aux?(C′)

Aux?(C)
. We then

require moreover that #C′ ◦ ϕ′
= #C.

2.2. Pre-Linear Proof-Structures (PLPS)

With PPLPS (Pre-Pre-Linear Proof-Structures) we shift from ‘‘sets of cells’’ (elements of Cells) to graphs, and this amounts
to give the rules allowing to connect the ports of the different cells. We introduce a set I (intuitively, p ∈ I when p is a port
of some axiom and a conclusion of a PPLPS) andwe give conditions on the set of wires of our graphs: condition 1 implies that
three ports cannot be connected by two wires, condition 2 implies that auxiliary ports can never be conclusions of PPLPS
(see Definition 7), condition 3 implies that when the principal port of a cell is connected to another port this is necessarily
a port of some cell, condition 4 corresponds to the fact that PPLPS are cut-free.

The reader acquainted with the theory of linear logic proof-nets might be interested in the reasons why our structures
(PPLPS and later PLPS, LPS and PS) never contain cuts. There are essentially two reasons:
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• (cut-free) PS are enough for our purpose, since the property we want to prove (injectivity) deals with cut-free proofs:
once a precise notion of ‘‘identity’’ (or better said isomorphism) between cut-free PS is given (see Definition 19), if we
prove that two different PS have different interpretations, then injectivity is proven (w.r.t. the chosen interpretation)
whatever system of proofs one considers, provided the notion of cut-free proof of this system coincides with the one
of PS.4

• We can thus avoid a technical problem related to the presence of cuts in untyped proof-structures: it might happen that
applying a cut-elimination step to an untyped proof-structure which ‘‘contains a cycle’’ (meaning that it does not satisfy
the proof-net correctness criterion) yields a graph without cuts but containing ‘‘vicious cycles’’ (a premise of some link
is also its conclusion: see the discussion before Definition 13 of PLPS). It is precisely to avoid this problem that in [6] we
decided to restrict to nets (proof-structures ‘‘without cycles’’ i.e. satisfying the correctness criterion).

Definition 5. Let PPLPS be the set of triples Φ = (C, I, W) with C ∈ Cells, I a finite set satisfying I ∩ P (C) = ∅ and
W ⊆ P2(P (C) ∪ I) such that

1. for any w, w′
∈ W such that w ∩ w′

≠ ∅, we have w = w′;
2. we have P aux(C) ∪ I ⊆


W ;

3. for any w ∈ W such that w ∩ I ≠ ∅, we have w ∩ P pri(C) = ∅;
4. for any w ∈ W , there exists p ∈ w such that p /∈ P pri(C).

We setC(Φ) = C, I(Φ) = I,W(Φ) = W andP (Φ) = P (C(Φ))∪I. The elements ofP (Φ) are the ports ofΦ , the elements
of C(C(Φ)) are the cells of Φ and those of W(Φ) are the wires of Φ .

Notations 6. Let Φ ∈ PPLPS. We set C(Φ) = C(C(Φ)) and Cα(Φ) = Cα(C(Φ)) for any α ∈ T ∪ {?w, ?d, ?cb, ?cauxd},
tΦ = tC(Φ), CΦ = CC(Φ), P

pri
Φ = Ppri

C(Φ), P
left
Φ = Pleft

C(Φ) and Auxdoors(Φ) = Auxdoors(C(Φ)).

We now introduce precisely axioms and conclusions of a PPLPS Φ; a consequence of our definition is that a conclusion p
of Φ is either the principal port of some cell or an axiom port.

Definition 7. For any Φ ∈ PPLPS, we set:
• P f(Φ) = I(Φ) ∪ {p ∈ P (C(Φ)) | p /∈


W(Φ)}; the elements of P f(Φ) are the free ports or the conclusions of Φ;

• Ct(Φ) = {l ∈ C(Φ) | Ppri
Φ (l) ∈ P f(Φ)}; the elements of Ct(Φ) are the terminal cells of Φ;

• Ax(Φ) = {{p, q} ∈ W(Φ) | p, q /∈ P pri(C(Φ))}; the wire {p, q} ∈ Ax(Φ) is an axiom of φ and the ports p and q are axiom
ports;

• Axt(Φ) is the set {w ∈ Ax(Φ) | (∃p ∈ w)p ∈ P f(Φ)} and Axi(Φ) is the set {w ∈ Ax(Φ) | (∀p ∈ w) p ∈ P f(Φ)}5; the
wires of Axt(Φ) (resp. Axi(Φ)) are the terminal axioms (resp. the isolated axioms) of Φ .

Definition 8. Let Φ, Φ ′
∈ PPLPS. We write ϕ = (ϕP , ϕC) : Φ ≃ Φ ′ if, and only if,

• ϕP is a bijection P (Φ) → P (Φ ′) such that im(ϕP I(Φ)) = I(Φ ′);

• (ϕP

P (C(Φ′))

P (C(Φ))
, ϕC) : C(Φ) ≃ C(Φ ′);

• and for every {p, q} ∈ P2(P (Φ)), we have {p, q} ∈ W(Φ) if, and only, if {ϕP (p), ϕP (q)} ∈ W(Φ ′).
For any Φ, Φ ′

∈ PPLPS, for any ϕ = (ϕC, ϕP ) : Φ ≃ Φ ′, we set P (ϕ) = ϕP and C(ϕ) = ϕC .

Intuitively, an axiom port is ‘‘above’’ a unique conclusion. But for general PPLPS this is wrong and we can only say that an
axiom port cannot be ‘‘above’’ two different conclusions (Lemma 10). We thus consider the reflexive and transitive closure
≤Φ of the relation <1

Φ ‘‘p is immediately below p′ in Φ ’’ (see Definition 9) and show that our statement holds provided ≤Φ

is antisymmetric (Lemma 14), that is for PLPS (Definition 13).

Definition 9. For any Φ ∈ PPLPS, we define the binary relation <1
Φ on P (Φ) as follows: p <1

Φ p′ if, and only if, one of the
following conditions holds:

• there exists a cell l of Φ such that p is the principal port of l and p′ is an auxiliary port of l
• p′ is the principal port of some cell l′ of Φ , p is an auxiliary port of some cell l of Φ and {p, p′

} is a wire of Φ .
The binary relation ≤Φ (or simply ≤) on P (Φ) is the transitive reflexive closure of <1

Φ .

Lemma 10. Let Φ ∈ PPLPS. We have (∀w ∈ Ax(Φ)) (∀p ∈ w) (∀c, c ′
∈ P f(Φ)) ((c ≤Φ p and c ′

≤Φ p) ⇒ c = c ′).

The proof of Lemma 10 is just an application of Facts 11 and 12:

Fact 11. Let Φ ∈ PPLPS and p, q1, q2 ∈ P (Φ). If q1 ≤Φ p and q2 ≤Φ p, then q1 ≤Φ q2 or q2 ≤Φ q1.

Proof. If q1 <1
Φ p and q2 <1

Φ p, then q1 = q2. �

Fact 12. Let Φ ∈ PPLPS. If c ∈ P f(Φ) and p ≤Φ c, then p = c.

Proof. If c ∈ P f(Φ) then ¬p <1
Φ c for every p ∈ P (Φ). �

4 We already mentioned in the introduction that a standard cut-free proof-net (as defined for example in [10] or in [6]) is a particular case of PS.
5 Notice that Axi(Φ) = {w ∈ W(Φ) | w ∈ P2(I(Φ))}.
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Fig. 1. Example of LPS. Let Ψ2 ∈ PPLPS be as in the figure and such that #Ψ2 (p1) = 1 = #Ψ2 (p2). Then we have Ψ2 ∈ LPS. Actually Ψ2 ∈ ?-box-PLPS∩ LPS
(see Definition 43).

A PPLPS Φ can have ‘‘vicious cycles’’ like for example a cell l such that p (resp. p′) is the principal (resp. an auxiliary) port
of l and {p, p′

} is a wire of Φ: in [10] this corresponds to a link having a premise which is also the conclusion of the link. Let
us stress that such a cycle is called ‘‘vicious’’ to distinguish it from the cycles in the so-called correctness graphs, which are
related to the issue of sequentialization (see the discussion before Corollary 55). A PLPS is a PPLPS without vicious cycles:
Definition 13. We set PLPS = {Φ ∈ PPLPS | the relation ≤Φ is antisymmetric}.

The fact that an axiom port is above a conclusion follows from the antisymmetry of ≤ and from the fact that minimal
elements are conclusions. Indeed:
Lemma 14. Let Φ ∈ PLPS. We have (∀w ∈ Ax(Φ)) (∀p ∈ w) (∃!c ∈ P f(Φ)) c ≤Φ p.
Proof. For the unicity, apply Lemma 10. For the existence, use the antisymmetry of≤Φ and the following property: we have

(∀q ∈ P (Φ)) ((∀p ∈ P (Φ))(p ≤Φ q ⇒ p = q) ⇒ q ∈ P f(Φ)). �

The depth of a cell l is (in the usual syntax see [10]) the number of exponential boxes containing l. We have not yet
defined our notion of box (Definition 17), but since we are cut-free, l’s depth can also be defined as the number of doors of
boxes below l; this makes sense in our framework too. We thus obtain the following definition (where the function # plays
a crucial role, as mentioned in Remark 3):
Definition 15. Let Φ ∈ PLPS. For any p ∈ P (Φ):

• we denote by cΦ(p) the unique c ∈ P f(Φ) such that c ≤Φ p
• depthΦ(p) = Card({l ∈ C!(Φ) | Ppri

Φ (l) <Φ p})+


q∈Auxdoors(Φ),q≤p #Φ(q).
The depth of a PLPS Φ is the maximal depth of its ports and it is denoted by depth(Φ).

2.3. Linear Proof-Structures (LPS)

In a (cut-free) Proof-Structure of [10], the depth of an axiom link is easily defined as the number of boxes in which the
link is contained. In our framework this notion makes sense only when the two ports of an axiom have the same depth
(Definition 15). This condition is not fulfilled by every PLPS: when this is the case we have a LPS.
Definition 16. A LPS is a PLPSΦ such that (∀{p1, p2} ∈ Ax(Φ)) depthΦ(p1) = depthΦ(p2). We denote by LPS the set of LPS.6

2.4. Proof-Structures (PS)

Intuitively, what is still missing in Φ ∈ LPS to be a (cut-free) Proof-Structure in the standard sense [10] is the connection
between the doors of exponential boxes (once this information has been correctly produced, it automatically yields boxes).
We then introduce a function b associating with every v ∈ C!(Φ) a set of auxiliary doors of Φ: this is precisely what
was missing, provided certain conditions are satisfied (Definition 17). In particular, one asks that with every v ∈ C!(Φ) is
associated a Proof-Structure: this is the usual notion of exponential box (see for example [4]). In our framework, in order to
define the Proof-Structure associated with v,7 we first build a PLPS Φv by taking ‘‘everything what is above v and the doors
associated by b with v’’ and add a ?-cell under every ‘‘auxiliary conclusion’’; doing this we take care to change the value of
# on the auxiliary doors. We then remove v (using Definition 85); finally we define from b the new function bv:
Definition 17. A Proof-Structure (PS) is a pair R = (Φ, b) where Φ ∈ LPS and b is a function C!(Φ) → P(Auxdoors(Φ))
such that for any p ∈ Auxdoors(Φ), #Φ(p) = Card{l ∈ C!(Φ) | p ∈ b(l)}. Proof-Structures are defined by induction on the
number of !-cells: we ask that with every v ∈ C!(Φ) is associated a PS called the box of v (denoted by B(R)(v)),8 and defined
from the following subset Bv of P (Φ):

Bv = {q ∈ P (Φ) | (∃p ∈ Paux
Φ (v) ∪ b(v)) p ≤Φ q}.

6 Our notion of LPS has not to be confused with what is sometimes called ‘‘the linearization of a proof-net’’: the ‘‘linearization’’ forgets the auxiliary
doors, and obviously there are some PS that have the same ‘‘linearization’’ but different LPS.
7 We use the fact v’s box is itself a Proof-Structure in Definition 24.
8 Two examples of boxes are in Figs. 3 and 4.
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Fig. 2. Example of PS. In the standard syntax of [6] we have a box with a unique auxiliary door represented by the port p2 (the dashed arrow allows to
determine the doors of the box) and a dereliction link (the port p1); the conclusions of the auxiliary door and the dereliction are then contracted.

We ask that for v, v′
∈ C!(Φ) either Bv ∩ Bv′ = ∅ or Bv ⊆ Bv′ or Bv′ ⊆ Bv .9

In order to define B(R)(v) one first defines Ψ ∈ PLPS, starting from two sets L0 and P0 and from two bijections
p1 : L0 → b(v) and p0 : L0 → P0, by setting:

• C(Ψ ) = L0 ⊎ (P(CΦ)(Bv) \ P(CΦ)(b(v)));
tΨ P(CΦ )(Bv)\P(CΦ )(b(v)) = tΦ P(CΦ )(Bv)\P(CΦ )(b(v)) and tΨ (l) = ? for every l ∈ L0;

• P (C(Ψ )) = (Bv ∪ {Ppri
Φ (v)}) ⊎ P0;

• CΨ (p) =


CΦ(p) if p ∈ Bv\b(v);
l if p = p1(l) for p ∈ b(v);
l if p = p0(l) for p ∈ P0;
v if p = Ppri

Φ (v);

10

• Ppri
Ψ (l) =


Ppri

Φ (l) if l /∈ L0;
p0(l) if l ∈ L0;

• Pleft
Ψ = Pleft

Φ Cm(Φ)∩P(CΦ )(Bv);
• #Ψ (p) = Card{w ∈ C!(Φ) ∩ P(CΦ)(Bv) | w ≠ v and p ∈ b(w)};
• I(Ψ ) = ∅

11;
• W(Ψ ) = {{p, q} ∈ W(Φ) | p, q ∈ Bv}.

The box of v, denoted by B(R)(v), is the pair (Φv, bv), where Φv is obtained from Ψ by eliminating the terminal link v

(Definition 85) and bv = b
P(Auxdoors(Φv))

C!(Φv)
.

We set LPS(R) = Φ , b(R) = b and we will write the ports of R (resp. the cells of R) meaning the ports of Φ (resp. the cells
of Φ).

In order to establish the equality (or better said an isomorphism) between two graphs representing (some kind of) proof
we need to say how the conclusions of the two graphs correspond one another: we thus introduce the notion of indexed
PPLPS (resp. PLPS, LPS, PS).
Definition 18. We denote by PPLPSind the set of pairs (Φ, ind) such that Φ ∈ PPLPS and ind is a bijection P f(Φ) →

pCard(P f(Φ))q.
We set PSind = {(R, ind) | R ∈ PS and (LPS(R), ind) ∈ PPLPSind}.

Definition 19. Let (Φ, ind) ∈ PLPSind and let (Φ ′, ind’) ∈ PPLPSind. We write ϕ : (Φ, ind) ≃ (Φ ′, ind’) if, and only if,
ϕ : Φ ≃ Φ ′ and, for every c ∈ P f(Φ), we have ind’(P (ϕ)(c)) = ind(c).
Definition 20. Let (R, ind), (R′, ind’) ∈ PSind. We write ϕ : (R, ind) ≃ (R′, ind’) if, and only if, ϕ : (LPS(R), ind) ≃ (LPS(R′),
ind’) and the following diagram commutes12:

C!(LPS(R))
b(R)✲ P(Auxdoors(LPS(R)))

C!(LPS(R′))

C(ϕ)
C!(LPS(R′))

C!(LPS(R))
❄

b(R′)
✲ P(Auxdoors(LPS(R′)))

P(P (ϕ)
Auxdoors(LPS(R′))

Auxdoors(LPS(R)) )

❄

9 This is the usual nesting condition of the definition of proof-net: two boxes are either disjoint or contained one in the other.
10 This implies that every l ∈ L0 is a ?-cell with two ports : p0(l) and p1(l), where (see next item) p0(l) is the principal port and p1(l) is the unique auxiliary
port of l.
11 Asmentioned at the beginning of Section 2.2, p ∈ I(Ψ )when p is an axiom port and a conclusion ofΨ . Following our construction, none of the ports of
Ψ can be in such a position. Notice, in particular, that in case the unique auxiliary port of v is an axiom port of Φ , then it is not a conclusion of Ψ (and thus
it is not an element of I(Ψ )) but it is a conclusion of LPS(B(R)(v)) and the unique element of I(LPS(B(R)(v))), following Definition 85 of the Appendix.
12 Recall that the notation C(ϕ) refers to Definition 8 and that for a function f the notation P(f ) is among the ones introduced in the conventions at the
beginning of the paper.
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3. Experiments

We introduce in Section 3.1 experiments for Proof-Structures (a well-known notion coming from [13]), adapted to our
framework (Definition 24), and in Section 3.2 a new notion, the one of k-experiment of PLPS (Definition 35), that will be
crucial in the sequel of the paper.

3.1. Experiments of PS

In [8,6] experiments are defined in an untyped framework; we follow here the same approach in our Definition 24.
Experiments allow to compute the semantics of proof-nets (more generally of proof-structures): the interpretation JπK of a
proof-net π is the set of the results of π ’s experiments, and the same happens in our framework for PS (Definition 27). Like
in [6], in the following definition the set {+, −} is used in order to ‘‘semantically distinguish’’ cells of type ⊗ from cells of
typeM, which is mandatory in an untyped framework (as already discussed and used in [6]). The function ( )⊥ (which is the
semantic version of linear negation) flips polarities (see Definition 86 of the appendix for the details).
Definition 21. We fix a set A which does not contain any couple nor any 3-tuple and such that ∗ ∉ A; we call atoms the
elements of A. By induction on nwe define Dn:

• D0 = A ∪ ({+, −} × {∗})
• and Dn+1 = D0 ∪ ({+, −} × Dn × Dn) ∪({+, −} × Mfin(Dn)).

We set D =


n∈N Dn.
We need in the sequel the notion of injective k-point of D<ω , and for E ∈ P(D<ω) the notion of E-atomic element. In a

typed framework, we would not have to define the latter notion, but in our untyped framework we need to restrict the set
E of all results of all experiments of a PS to the set of the results of the atomic experiments (see footnote 26) of this PS. Of
course, a given point of D can be the result of an atomic experiment of a PS and the result of a non-atomic experiment of
another PS. However, once the subset E of D<ω is fixed, it makes sense for r ∈ E to say that it is E-atomic: this means that
no other element of E is ‘‘more atomic’’ than r .
Definition 22. Given k ∈ N, we say that r ∈ D<ω is a k-point if, for any m ∈ N, for any α1, . . . , αm ∈ D such that (+, [α1,
. . . , αm]) occurs in r ,13 we havem = k.

We say that r ∈ D<ω is injectivewhen for every γ ∈ A, either γ does not occur in r (see footnote 13) or there are exactly
two occurrences of γ in r (see footnote 13).

Given E ∈ P(D<ω), we say that r ∈ E is E-atomic when for every r ′
∈ E and every substitution14 σ such that σ(r ′) = r

one has σ(γ ) ∈ A for every γ ∈ A that occurs in r ′. For E ∈ P(D<ω), we denote by EAt the subset of E consisting of the
E-atomic elements.
Remark 23. The notion of k-point is reminiscent of the notion of ‘‘result of a k-obsessional experiment’’ [10], and it is
also used in [8]. Notice however that the notion of injective point is not related to what is called in [10] a result of an
injective k-obsessional experiment: we keep the idea that all positive multisets have the same size, but we are very far from
obsessionality. In some sense we do here exactly the opposite than obsessional experiments do: a k-obsessional experiment
takes k copies of the same (k-obsessional) experiment every time it crosses a box, while the intuition here is that injective
k-points are results of experiments obtained by taking k pairwise different (k-)experiments every time a box is crossed.

We now adapt to our framework the definition of experiment (given in [13]; see also [9,10,6] for alternative definitions),
the key tool to define the interpretation of a PS. Intuitively, an experiment of a PSΦ is a labeling of its ports by elements ofD:
this works perfectly well in the multiplicative fragment of LL (see for example [27]), but of course for PS with depth greater
than zero things become a bit more complicated. One can either say that an experiment is defined only on ports p such that
depthΦ(p) = 0 and that with every !-cell with depth zero is associated a multiset of experiments of its box (allowing to
define the labels of the ports with depth zero): this is the choice made in [8] and [6]. Or one can follow (as we are going to
do here in the spirit of [9] and [10]) the intuition that even with ports p such that depthΦ(p) > 0, an experiment associates
labels, but not necessarily a unique label for every port (they might be several or none): formally it will associates with p a
multiset of elements of D (and thus with every !-cell a multiset of multisets of experiments). Of course the two definitions
associate the same interpretation with a given PS (Definition 27).
Definition 24. An experiment e of a PS R = (Φ, b) is given by a function P (Φ) → Mfin(D)15 and for every v ∈ C!(Φ) a
finite multiset of finite multisets of experiments of v’s box (i.e. B(R)(v)) e(v) = [[e11, . . . , e

1
n1 ], . . . , [e

lv
1 , . . . , elvnlv ]], where

lv ≥ 0 and ni ≥ 0 for every 1 ≤ i ≤ lv . Experiments are defined by induction on depth(Φ) and we ask that Card(e(v)) = 1
for v ∈ C!(Φ) such that depthΦ(Ppri

Φ (v)) = 0 and that Card(e(p)) = 1 for p ∈ P (Φ) such that depthΦ(p) = 0. For ports at
depth 0 the following conditions hold:

13 See Definition 87 of the appendix for a formal definition of this expression.
14 A substitution is a function σ : D → D induced by a function σ A

: A → D (see Definition 88 of the appendix for the details).
15 The elements of e(p) are often called the labels of p. Notice that e(p) ∉ D.
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Fig. 3. The box B(R)(v) of the unique !-cell v of the PS R of Fig. 2.

• for any {p, q} ∈ Ax(Φ), we have α = β⊥, where e(p) = [α] and e(q) = [β];
• for any l ∈ C⊗(Φ), we have e(Ppri

Φ (l)) = [(+, α, β)], where e(Pleft
Φ (l)) = [α] and e(Pright

Φ (l)) = [β];
• for any l ∈ CM(Φ), we have e(Ppri

Φ (l)) = [(−, α, β)], where e(Pleft
Φ (l)) = [α] and e(Pright

Φ (l)) = [β];
• for any l ∈ C1(Φ), we have e(Ppri

Φ (l)) = [(+, ∗)];
• for any l ∈ C⊥(Φ), we have e(Ppri

Φ (l)) = [(−, ∗)];
• for any l ∈ C?(Φ), we have e(Ppri

Φ (l)) = [(−,


p∈PauxΦ (l) e(p))];
• for any {p, q} ∈ W(Φ) \ Ax(Φ), we have e(p) = e(q).

If depth(Φ) = 0, the definition is already complete. Otherwise for every v ∈ C!(Φ) such that depthΦ(Ppri
Φ (v)) = 0 we know

the multiset [e1, . . . , env ] of experiments of v’s box such that e(v) = [[e1, . . . , env ]] and we know for every port p of Φ

which is also a port of B(R)(v) the multiset ei(p) (for i ∈ {1, . . . , nv}). Then we set

• e(Ppri
Φ (v)) = [(+,

nv
i=1 ei(p))], where p is the unique free port of B(R)(v) such that Ppri

Φ (v) ≤Φ p;16

• e(p) =
nv

i=1 ei(p) for every port p of Φ which is also a port of B(R)(v);17

• e(w) =
nv

i=1 ei(w) for every !-cell w of Φ which is also a cell of B(R)(v) (see footnote 17).

Example 25. Consider the PS R of Fig. 2 and the box B(R)(v) of its unique !-cell v represented in Fig. 3. We can define two
experiments e1 and e2 of B(R)(v) by choosing γ1, γ2 ∈ D: we obtain ei(p2) = ei(p′

2) = [(−, γi, γ
⊥

i )] and ei(q′) = [(+, ∗)]

where {q, q′
}, {p2, p′

2} ∈ W(LPS(R)). By choosing α ∈ D, we have an experiment e of R such that e(p1) = [(−, α, α⊥)],
e(p′

2) = e(p2) = [(−, γ1, γ
⊥

1 ), (−, γ2, γ
⊥

2 )], e(c1) = [(−, [(−, γ1, γ
⊥

1 ), (−, γ2, γ
⊥

2 ), (−, α, α⊥)])], e(q′) = e(q) =

[(+, ∗), (+, ∗)], e(c2) = [(+, [(+, ∗), (+, ∗)])], and e(v) = [[e1, e2]].

Definition 26. Let (R, ind) ∈ PSind. We set n = Card(P f(LPS(R))). For any experiment e of R, for any r ∈ Dn, we say that
(e, r) is an experiment of (R, ind) and that r is the result of (e, r) if, and only if, r = (x1, . . . , xn), where xi is the unique
element of the multiset e ◦ ind−1(i).

Definition 27. If (R, ind) ∈ PSind, we define the interpretation of (R, ind) as the set J(R, ind)K = {r ∈ DCard(P f(R))
| r is the

result of an experiment of (R, ind)}.

The crucial result proven in [13] is that if π ′ is a proof-net obtained by applying to π some steps of cut-elimination, then
JπK = Jπ ′K. Since any cut-free untyped net of [6] (and thus any cut-free proof-net of, for example, [10]) is a PS, in order to
prove injectivity for the nets of [6] (and thus for the usual proof-nets of, for example, [10]) it is enough to prove that two PS
with the same interpretation are the same (Corollary 54 and Corollary 55).

Example 28. We can define two experiments e1 and e2 of the PS R represented in Fig. 2 in such a way that e1(p1) = [ζ1],
e2(p1) = [ζ2], e1(p2) = [ζ2, ζ3, ζ4] and e2(p2) = [ζ1, ζ3, ζ4], where ζj = (−, γj, γj) and the γj are distinct atoms. The two
(different) experiments have the same result. More precisely: we define ind by setting ind(c1) = 1 and ind(c2) = 2, and we
set r = ((−, a), (+, b)) with a = [ζ1, ζ2, ζ3, ζ4] and b = [(+, ∗), (+, ∗), (+, ∗)]. Then (e1, r) and (e2, r) are experiments
of (R, ind), and r is an J(R, ind)K-atomic injective 3-point.

3.2. Experiments of PLPS

In general, if we want to know whether a point is the result of any experiment, it is not enough to know the LPS of
the (proof-)net: we have to know ‘‘the connection between the doors of the boxes’’. But if one takes k copies every time

16 Let {qv} = Paux
Φ (v); then for some port q′

v of Φ we have {qv, q′
v} ∈ W(Φ). If {qv, q′

v} ∈ Ax(Φ) (resp. {qv, q′
v} ∉ Ax(Φ)), then qv (resp. q′

v) is the unique
free port p of B(R)(v) such that Ppri

Φ (v) ≤Φ p.
17 We are using here the nesting condition of Definition 17 : see footnote 9.



D. de Carvalho, L. Tortora de Falco / Annals of Pure and Applied Logic 163 (2012) 1210–1236 1219

one crosses a box, then it is enough: results of k-experiments can be defined directly on LPS. This yields the notion of
k-experiment of a LPS (Definition 35). Actually k-experiments are defined ‘‘up to the names of the atoms’’ and we thus
introduce sequences of indexes: the intuition is that for γ ∈ A and s ∈ Nn, (γ , s) is one of the kn copies of γ .

We set A′
= A × N<ω , and we denote by | | (resp. loc) the first (resp. second) projection with domain A′ and codomain

A (resp. N<ω) : the function | | associates with δ ∈ A′ its ‘‘support’’ |δ| ∈ A, while loc associates with δ ∈ A′ its ‘‘location’’
loc(δ) ∈ N<ω .
The embedding that associates (a, ε) ∈ A′ with every a ∈ A allows to consider A as a proper subset of A′.

Definition 29. For any s ∈ N<ω , we denote by dig(s) the function A′
→ A′ defined by dig(s)(δ) = (|δ|, conc(loc(δ), s)),

where conc is the function N<ω
× N<ω

→ N<ω defined by conc((d1, . . . , dm), (d′

1, . . . , d
′

m′)) = (d1, . . . , dm, d′

1, . . . , d
′

m′).

A construction similar to the one used to define D from A allows to define D′ from A′: intuitively, an element of D′ is an
element of Dwhere every atom is followed by a sequence of integers. Notice that since A ⊆ A′ one has D ⊆ D′, and this will
be used in Definition 35 (last item) of experiment of a PLPS.

Definition 30. By induction on n we define D′
n: D′

0 = A′
∪ ({+, −} × {∗}) and D′

n+1 = D′

0 ∪ ({+, −} × D′
n × D′

n)
∪({+, −} × Mfin(D′

n)). We set D′
=


n∈N D′
n.

Definition 31. We define At’ : D′
→ Pfin(A′) the function which associates with α ∈ D′ its atoms, by induction on

min{n ∈ N | α ∈ D′
n}:

• At’(δ) = {δ} if δ ∈ A′;
• At’(ι, ∗) = ∅;
• At’(ι, α1, α2) = At’(α1) ∪ At’(α2);
• At’(ι, [α1, . . . , αm]) = ∪

m
j=1At’(αj).

We also denote by At’ the two following functions:

Pfin(D′) −→ Pfin(A′) and Mfin(D′)
<ω

−→ Pfin(A′)

a −→


α∈a At’(α) (a1, . . . , an) −→
n

i=1 At’(Supp(ai))

Definition 32. The set of partial injections from A′ to A′ is denoted by pInj.
Let τ ∈ pInj. For any α ∈ D′ such that At’(α) ⊆ dom(τ ), we define τ · α ∈ D′ by induction on min{n ∈ N | α ∈ D′

n}:

τ · α =


τ(δ) if α = δ ∈ A′;
(ι, ∗) if α = (ι, ∗);
(ι, τ · α1, τ · α2) if α = (ι, α1, α2);
(ι, [τ · α1, . . . , τ · αm]) if α = (ι, [α1, . . . , αm]).

For any a = [α1, . . . , αm] ∈ Mfin(D′) such that At’(a) ⊆ dom(τ ), we set τ · a = [τ · α1, . . . , τ · αm] ∈ Mfin(D′). For
any r = (α1, . . . , αn) ∈ D′<ω such that At’([α1, . . . , αn]) ⊆ dom(τ ), we set τ · r = (τ · α1, . . . , τ · αn) ∈ D′<ω . For any
r = (a1, . . . , an) ∈ Mfin(D′)

<ω such that At’(r) ⊆ dom(τ ), we set τ · r = (τ · a1, . . . , τ · an) ∈ Mfin(D′)
<ω .

Definition 33. For any τ ∈ pInj, for any function h such that im(h) ⊆ D′ and At’(im(h)) ⊆ dom(τ ), we define τ · h :

dom(h) → D′ as follows: (τ · h)(x) = τ · h(x).

The function digk
d associates with a ∈ Mfin(D′) the multiset of the kd copies of a: if for example a = [α, β, β] for some

α, β ∈ A, then one has dig2
1(a) = [(α, 1), (α, 2), (β, 1), (β, 2), (β, 1), (β, 2)]. An immediate consequence of the following

definition is that for every a ∈ Mfin(D′) and for every d ∈ N one has digk
d+1(a) = digk

1(dig
k
d(a)).

Definition 34. For any k, d ∈ N, let digk
d be the functionMfin(D′) → Mfin(D′) defined by digk

d(a) =


s∈pkqd


α∈Supp(a) a(α)·

[dig(s) · α].

We now have all the tools to define (a particular kind of) experiments directly on LPS and not on PS as in the usual
setting (Definition 24 in our framework). It clearly appears in Section 4.2 (and precisely in Fact 48) how (injective atomic)
k-experiments of LPS are used in our proof. It is worth noticing that we recover in the framework of LPS the simplicity of the
definition of experiment in the multiplicative fragment of linear logic proof-nets (see for example [27] and [25]): despite
the presence of exponentials (here ?-cells and !-cells) a k-experiment of a PLPS is just a labeling of its ports by elements of
D′ satisfying some conditions.

Definition 35. Let k ∈ N. For any Φ ∈ PLPS, a k-experiment e of Φ is a function P (Φ) → D′ such that
• for any l ∈ C⊗(Φ), we have e(Ppri

Φ (l)) = (+, e(Pleft
Φ (l)), e(Pright

Φ (l)));
• for any l ∈ CM(Φ), we have e(Ppri

Φ (l)) = (−, e(Pleft
Φ (l)), e(Pright

Φ (l)));
• for any l ∈ C1(Φ) (resp. l ∈ C⊥(Φ)), we have e(Ppri

Φ (l)) = (+, ∗) (resp. e(Ppri
Φ (l)) = (−, ∗));

• for any l ∈ C!(Φ), we have e(Ppri
Φ (l)) = (+,


p∈PauxΦ (l) dig

k
1([e(p)]))

18;

18 Notice that


p∈PauxΦ (l) dig
k
1([e(p)]) = digk

1([e(p)]) where {p} = Paux
Φ (l).
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• for any l ∈ C?(Φ), we have e(Ppri
Φ (l) = (−,


p∈PauxΦ (l) dig

k
#Φ (p)([e(p)]));

• for any {p, q} ∈ Ax(Φ), we have e(p) = e(q)⊥19 and e(p) ∈ D;
• for any {p, q} ∈ W(Φ) \ Ax(Φ), we have e(p) = e(q).

Definition 36. Let k ∈ N, let Φ ∈ PLPS. Let e be any k-experiment of Φ .
We say that e is atomic if for any w ∈ Ax(Φ), for any p ∈ w, we have e(p) ∈ A.
We say that e is injective if for any w, w′

∈ Ax(Φ), for any p ∈ w, p′
∈ w′, we have At’(e(p))∩At’(e(p′)) ≠ ∅ ⇒ w = w′.

Definition 37. Let k ∈ N. Let (Φ, ind) ∈ PLPSind. Let e be a k-experiment of Φ and let r ∈ (D′)Card(P
f(Φ)). We say that (e, r)

is a k-experiment of (Φ, ind) and that r is the result of (e, r) iff r = e ◦ ind−1.

Example 38. Let Ψ2 be as in Fig. 1, ind2(c1) = 1 and ind2(c2) = 2. Let γ1 ∈ A, γ2 ∈ A such that γ1 ≠ γ2. Let a1 =

[(γ1, 1), (γ1, 2), (γ1, 3), (γ2, 1), (γ2, 2), (γ2, 3)] and a2 = [(+, (γ1, 1), (γ2, 1)), (+, (γ1, 2), (γ2, 2)), (+, (γ1, 3), (γ2, 3))].
Then r2 = ((−, a1), (+, a2)) is the result of (e2, r2), where e2 is the injective atomic 3-experiment of (Ψ2, ind2) such that

e2(p1) = γ2 and e2(p2) = γ1. Notice that once we have chosen the labels of p1 and p2 and the integer k (here k = 3), the
k-experiment of Ψ2 is entirely determined.

Remark 39. As mentioned in Example 38, once an integer k ≥ 1 and the labels of the axiom ports of the LPS Φ are chosen,
the k-experiment of Φ is entirely determined. In particular, given a 1-experiment e1 of Φ , for every k ≥ 1 there exists a
unique k-experiment ek associating with the axiom ports of Φ the same labels as e1. Clearly, e1 is atomic (resp. injective) iff
ek is atomic (resp. injective).

4. Main result

In Section 4.2, we prove the main result on PS (Theorem 50), based on a crucial proposition (Proposition 40) concerning
only LPS (and not PS anymore). In Section 4.1, we introduce the main syntactical tools to prove this crucial proposition, and
we explain the technique we adopt in Section 5 to fully prove it.

4.1. Main result on LPS

When there exist two injective atomic experiments of two LPS with the same result (up to the name of the atoms), then
the two LPS are the same:

Proposition 40. Let (Φ, ind), (Φ ′, ind’) ∈ LPSind. Let k > cosize(Φ), cosize(Φ ′).20 For any k-experiment (e, r) of (Φ, ind), for
any k-experiment (e′, r ′) of (Φ ′, ind’), e and e′ atomic and injective, if there exist ρ, ρ ′

∈ pInj such that ρ · r = ρ ′
· r ′, then

(Φ, ind) ≃ (Φ ′, ind’).

Remark 41. As already noticed (Example 38, Remark 39), for every integer k there exists a unique atomic injective k-
experiment of Φ ∈ LPS (up to the name of the atoms). This entails that by giving the suitable definition of isomorphism
between experiments, one could easily substitute the conclusion of Proposition 40 by a(n apparently) stronger statement,
namely (e, r) ≃ (e′, r ′).

Our strategy is to define a ‘‘measure’’ (mes(Φ), see Definition 42) of the size of an LPS Φ and to prove Proposition 40 by
induction on this measure. More precisely, relying on the fact that LPS (and actually PLPS) can be inductively built, our idea
can be roughly summed up as follows:

1. we start with the data contained in the hypothesis of Proposition 40, namely with (Φ, ind), (Φ ′, ind’) ∈ LPSind and two
k-experiments ((e, r) of (Φ, ind) and (e′, r ′) of (Φ ′, ind’)), both atomic and injective, and such that ρ · r = ρ ′

· r ′, for
some ρ, ρ ′

∈ pInj
2. from ρ · r = ρ ′

· r ′ we can deduce that21:
(a) (Φ, ind) and (Φ ′, ind’) can be obtained from some suitable LPS (Φ1, ind1) and (Φ ′

1, ind’1) by ‘‘adding the same cell(s)’’,
where mes(Φ1) < mes(Φ) and mes(Φ ′

1) < mes(Φ ′)
(b) (e, r) and (e′, r ′) can be obtained from some suitable injective atomic k-experiments (e1, r1) of (Φ1, ind1) and (e′

1, r
′

1)
of (Φ ′

1, ind’1) such that ρ1 · r1 = ρ ′

1 · r ′

1, for some ρ1, ρ
′

1 ∈ pInj
3. we can thus apply the induction hypothesis on the measure to (Φ1, ind1) and (Φ ′

1, ind’1) (with their injective atomic
k-experiments (e1, r1) and (e′

1, r
′

1)): we obtain (Φ1, ind1) ≃ (Φ ′

1, ind’1)
4. since by ‘‘adding the same cell(s)’’ to (Φ1, ind1) and (Φ ′

1, ind’1) one obtains (Φ, ind) and (Φ ′, ind’), from (Φ1, ind1) ≃

(Φ ′

1, ind’1) one easily deduces that (Φ, ind) ≃ (Φ ′, ind’).

19 δ⊥ is obtained from δ ∈ D′ by substituting every occurrence of + (resp. −) by − (resp. +): see Definition 86 of the appendix for the details.
20 The integer cosize(Φ) is the maximal arity of the ?-cells of Φ (see Definition 42).
21 This is the difficult part of the proof.
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The first thing we do is to define the measure, by introducing two sizes on elements of PPLPS: an integer and an ordered
pair (pairs are lexicographically ordered).

Definition 42. Let Φ ∈ PPLPS. We set cosize(Φ) = max{aΦ(l) | l ∈ C?(Φ)} andmes(Φ) = (


l∈C?(Φ) aΦ(l), Card(P (Φ)) +
p∈Auxdoors(Φ) #Φ(p)).

The aim of the rest of the section is to give a precise meaning to the expression ‘‘(Φ, ind) and (Φ ′, ind’) can be obtained
from some suitable LPS (Φ1, ind1) and (Φ ′

1, ind’1) by adding the same cell(s)’’. The intuition is that Φ1 (resp. Φ ′

1) is obtained
from Φ (resp. Φ ′) by ‘‘eliminating some terminal cell’’ (thus decreasing the measure). So the general problem is to define
a procedure to ‘‘eliminate a terminal cell’’ from Φ ∈ PLPS,22 which of course depends on the available terminal cells. We
thus first classify PLPS depending on their terminal cells: Φ ∈ PLPS can have different terminal cells, but notice that in case
Φ ∈ ?-box-PLPS defined below, every terminal cell of Φ belongs to the set C!(Φ) ∪ C?cauxd(Φ).

Definition 43. We set:
• ∅-PLPS = {Φ ∈ PLPS | W(Φ) = ∅}.
• ax-PLPS = {Φ ∈ PLPS | Axi(Φ) ≠ ∅}.
• mult-PLPS = {Φ ∈ PLPS | (∃l ∈ Ct(Φ)) tΦ(l) ∈ {⊗,M}}.
• unit-PLPS = {Φ ∈ PLPS | (∃l ∈ Ct(Φ)) tΦ(l) ∈ {1, ⊥}}.
• ?w-PLPS = {Φ ∈ PLPS | (∃l ∈ Ct(Φ)) l ∈ C?w(Φ)}.
• ?d-PLPS = {Φ ∈ PLPS | (∃l ∈ Ct(Φ)) l ∈ C?d(Φ)}.
• ?cb-PLPS = {Φ ∈ PLPS | (∃l ∈ Ct(Φ)) l ∈ C?cb(Φ)}.
• ?unit-PLPS = {Φ ∈ PLPS|(∃l ∈ Ct(Φ))l ∈ C?unit(Φ)}, whereC?unit(Φ) = {l ∈ C?(Φ)\C?cb(Φ)|(∃p ∈ Paux

Φ (l))(#Φ(p) ≥

1 and (∀q ≥Φ p)q /∈


Ax(Φ))};
• !unit-PLPS = {Φ ∈ PLPS | (∃l ∈ Ct(Φ) ∩ C!(Φ))(∃p ∈ Paux

Φ (l))(∀q ≥Φ p)q /∈


Ax(Φ))};
• ?-box-PLPS = PLPS \ (∅-PLPS ∪ ax-PLPS ∪ mult-PLPS ∪ unit-PLPS∪?w-PLPS∪?d-PLPS∪?cb-PLPS ∪ ?unit-PLPS ∪

!unit-PLPS).

If Φ ∈ ax-PLPS it is obvious how to remove an isolated axiom. And to ‘‘eliminate a terminal cell l’’ from a particular PLPS
is immediate when l ∈ C?w(Φ) or tΦ(l) ∈ {1, ⊥} since there is nothing ‘‘above’’ l. In case tΦ(l) ∈ {⊗,M, !} or l ∈ C?d(Φ),
‘‘to eliminate l’’ is intuitively clear, that is why we do not give the formal definition.23 But of course a non-empty Φ ∈ PLPS
does not always have an isolated axiom or contain the previously mentioned terminal cells: in that case we are in one of the
last four cases of Definition 43. When Φ ∈?cb-PLPS, there exists l ∈ C?cb(Φ) ∩ Ct(Φ) and p ∈ Paux

Φ (l) such that #Φ(p) = 0;
one can obtain Φ1 ∈ PLPS from Φ by removing p from the auxiliary ports of l: this operation (which is precisely described
in the proof of Proposition 40 in Section 5 and in the Appendix) is also intuitively clear, and yields a PLPS Φ1 with one more
conclusion and with a strictly smaller measure, since the number of premises of l has strictly decreased. It then remains to
describe operations allowing to shrink the measure when Φ ∈ ?unit-PLPS ∪ !unit-PLPS ∪ ?-box-PLPS.

The peculiarity of the PLPS elements of ?unit-PLPS∪ !unit-PLPS is that they contain ‘‘isolated subgraphs’’: if ‘‘above’’ an
auxiliary port p of l ∈ C!(Φ) ∪ C?(Φ) there are no axioms, then the subgraph ‘‘above’’ p is isolated. In presence of ‘‘isolated
subgraphs’’, we can apply to the PLPS Φ the following transformationswithout damage (Fact 44) and shrinking the measure
of Φ . For any Φ ∈ PLPS, for any l ∈ Ct(Φ) ∩ (C!(Φ) ∪ C?(Φ)), we denote by Φ[l] the PLPS obtained as follows:

• if l ∈ C!(Φ), then we distinguish between two cases:
– if {p ∈


Ax(Φ) | p ≥Φ Ppri

Φ (l)} ≠ ∅, then Φ[l] = Φ;
– otherwise, we remove l;

• if l ∈ C?(Φ), Φ[l] is Φ , except when there exists q ∈ Paux
Φ (l) such that #Φ(q) ≥ 1 and {p ∈


Ax(Φ) | p ≥Φ q} = ∅: in

that case Φ[l] is Φ where for every such q one has #Φ[l](q) = #Φ(q) − 1.

The reader can easily check that when Φ ∈ ?unit-PLPS ∪ !unit-PLPS, it is always possible to select a suitable cell l such
that mes(Φ[l]) < mes(Φ). And we now show that whatever l we choose, LPS is stable with respect to the transformation
previously defined.

Fact 44. For any Φ ∈ LPS, for any l ∈ Ct(Φ) ∩ (C!(Φ) ∩ C?(Φ)), we have Φ[l] ∈ LPS.

Proof. We have Ax(Φ[l]) = Ax(Φ) and for any {p, q} ∈ Ax(Φ), depthΦ(p) = depthΦ[l]
(p). �

We turn to the last case Φ ∈ ?-box-PLPS: here the intuition is that we eliminate one layer, the most external one. In
order to do so, we must be sure that there is no terminal axiom port in such a Φ .

Fact 45. For any Φ ∈ ?-box-PLPS ∩ LPS, we have Axt(Φ) = ∅.

22 In the proof of Proposition 40, we actually ‘‘eliminate terminal cells’’ fromΦ ∈ LPS. However, the definitionmakes sense for general PLPS, and it seems
more natural to define it on PLPS. We then have to take care that when applying this operation to a PLPS which is also a LPS we still get a LPS.
23 See Definition 85 in the appendix for such a definition.
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Proof. Let {p, q} ∈ Ax(Φ), suppose p ∈ P f(Φ) and let cq be the unique conclusion below q: by Definition 15 depthΦ(p) = 0.
Since Φ ∉ ax-PLPS we have q ≠ cq and thus cq is not an axiom port: in this case cq is the principal port of some cell l of Φ .
By Definition 43 this means that l ∈ C!(Φ) ∪ C?cauxd(Φ), which entails that depthΦ(q) > 0, thus contradicting Definition 16
of LPS. �

A consequence of Fact 45 is that in case Φ ∈ ?-box-PLPS∩LPS all Φ ’s conclusions are principal ports of some cells of the
set C!(Φ) ∪ C?cauxd(Φ); in the syntax of [10] this corresponds to a proof-structure Φ with no links at depth 0 except boxes
and contraction links. We call Φ the PLPS obtained from such a Φ by decreasing Φ ’s depth by 1, which can be easily done
since Φ ∈ ?-box-PLPS ∩ LPS24; the reader will notice that LPS is stable with respect to this operation, hence we actually
have Φ ∈ LPS. Furthermore, from Definition 42 it clearly follows thatmes(Φ) < mes(Φ).

Since in the proof of Proposition 40 we deal with indexed LPS, we conclude the section by defining the indexing function
on Φ[l] and Φ , based on the indexing function of Φ .

Definition 46. Let R = (Φ, ind) ∈ PLPSind and let l ∈ Ct(Φ) ∩ (C!(Φ) ∪ C?(Φ)). We set R[l] = (Φ[l], ind[l]), where
ind[l](p) = ind(cΦ(p)) for p ∈ P f(Φ[l]).

Definition 47. Let (Φ, ind) ∈ LPSind such that Φ ∈ ?-box-PLPS. We set (Φ, ind) = (Φ, ind), where Φ has been defined
above25 and ind(p) = ind(cΦ(p)).

Coming back to the last four cases of Definition 43, we want to mention that the cases Φ ∈ ?unit-PLPS and Φ ∈

!unit-PLPS have to be distinguished because our graphs (PLPS, LPS, PS) are disconnected (as already mentioned they can
contain ‘‘isolated subgraphs’’); if we decided from the beginning to restrict to connected graphs these cases would not occur
(and Corollary 54 would hold, but our main result Theorem 50 would be much weaker). On the other hand, even in the
connected case, the twomost delicate cases in the proof of Proposition 40 would still be Φ ∈?cb-PLPS and Φ ∈ ?-box-PLPS.

4.2. Main result on PS

An injective atomic k-experiment of an LPS Φ can be considered as a ‘‘prototype’’ of (atomic) k-experiment of any PS
(Φ, b).26 Indeed, every k-point of J(Φ, b)KAt can be obtained from the result of an injective atomic k-experiment of Φ: to be
precise, if (R, ind) ∈ PSind and (e, r) is any injective atomic k-experiment of (LPS(R), ind), we have

{r0 ∈ J(R, ind)KAt | r0 is a k-point} = {ρ · r | ρ is a partial map from A′ to A}

where ρ · r is defined by a straightforward generalization of Definition 32. In our proof we will only use Fact 48, namely that
for a PS R = (Φ, b), the restriction of JRK to the injective k-points which are JRK-atomic is precisely the set of the results of
the atomic injective k-experiments of Φ (up to the name of the atoms):

Fact 48. Let k ∈ N, let (R, ind) ∈ PSind and let (e, r) be an injective atomic k-experiment of (LPS(R), ind). We have:

{r0 ∈ J(R, ind)KAt | r0 is an injective k-point} = {ρ · r | ρ ∈ pInj and codom(ρ) = A}

Proof. One of the two inclusions is easy to prove: given an injective atomic k-experiment (e, r) of (LPS(R), ind) and given
ρ ∈ pInj such that codom(ρ) = A, there is an experiment (eρ, r0) of (R, ind) such that r0 = ρ · r . The experiment (eρ, r0) of
(R, ind) can be defined by induction onmes(LPS(R)) (see Definition 42 and see also Example 49).

Conversely, let r0 ∈ J(R, ind)KAt be an injective k-point and let (e0, r0) be an experiment of (R, ind). We prove that for
every atomic injective k-experiment (e, r) of (LPS(R), ind), there exists ρ ∈ pInj such that im(ρ) ⊆ At’(r0) and ρ · r = r0.
The proof is by induction on mes(LPS(R)), the unique case deserving some details being the one where there is a unique
terminal !-cell v of R and every other terminal cell is a ?-cell having a unique auxiliary port which is an element of b(R)(v).27
The situation is represented in Fig. 4. We set {p1, . . . , pl} = b(R)(v), we call B(R)(v) the box of v (we still denote by ind the
obvious bijection P f(LPS(B(R)(v))) ≃ pCard(P f(LPS(B(R)(v)))q) and we call p the unique free port of B(R)(v) such that
Ppri
LPS(R)(v) ≤LPS(R) p.
In the sequel of the proof, it is important to distinguish between experiments of PS (Definition 24) and k-experiments of

LPS (Definition 35): the experiments of PS have 0 as index (e0 and f i0), while all the others are k-experiments of LPS.
Let e0(v) = [[f 10 , . . . , f 10 ]], where (f i0, r

i
0) is an experiment of (B(R)(v), ind). Clearly, r i0 ∈ J(B(R)(v), ind)KAt is an injective

k-point. The restriction (f , s) of (e, r) to LPS(B(R)(v)) is an atomic injective k-experiment of (LPS(B(R)(v)), ind). We can
then apply the induction hypothesis: for every i ∈ pkq there exists ρi ∈ pInj such that im(ρi) ⊆ At’(r i0) and ρi · s = r i0.

28

24 See Definition 89 in the appendix for a formal definition.
25 and, more formally, in Definition 89 of the appendix.
26 Notice that we did not define k-experiments of PS but only of LPS: k-experiments of nets have been defined in [8] and by (injective) k-experiment of a
PS we mean here an experiment having a(n injective) k-point as result. A k-experiment of a PS R is said to be atomic if for any p ∈


Ax(LPS(R)), we have

Supp(e(p)) ⊆ A.
27 In the standard terminology of linear logic proof-nets one would say that R is an exponential box.
28 Notice that for every i ∈ pkq one has At’(s) ⊆ dom(ρi).
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Fig. 4. The critical case of Fact 48. We have p = p′ if, and only if, p′
∈


Ax(LPS(R)).

Since im(ρi) ⊆ At’(r i0) and since r0 is injective, one has At’(r i0) ∩ At’(r j0) = ∅ when i ≠ j and thus im(ρi) ∩ im(ρj) = ∅

when i ≠ j. We can then define ρ ∈ pInj on the elements γ ∈ At’(r): since for every such γ there exist a unique i ∈ pkq and
a unique β ∈ At’(s) such that γ = dig(i)(β), we can set ρ(γ ) = ρi(β).

We now check that ρ is indeed the function we look for. With the notations introduced we have:

• r0 = ((−,
k

i=1 f
i
0(p1)), . . . , (−,

k
i=1 f

i
0(pl)), (+,

k
i=1 f

i
0(p)));

• r i0 = ((−, f i0(p1)), . . . , (−, f i0(pl)), βi), where f i0(p) = [βi], for every i ∈ pkq;
• s = ((−, digk

d1
([f (p1)])), . . . , (−, digk

dl
([f (pl)])), f (p)), with, for any j ∈ plq, dj = #LPS(B(R)(v))(pj);

• r = ((−, a1), . . . , (−, al), (+, digk
1([f (p)]))), where, for any j ∈ plq, aj = digk

1(dig
k
dj
([f (pj)])).

Now notice that for every j ∈ plq we have digk
1(dig

k
dj
([f (pj)])) =

k
i=1 dig(i) · digk

dj
([f (pj)]); and, since we have At’(digk

dj

([f (pj)])) ⊆ At’(s), we can deduce for every β ∈ At’(digk
dj
([f (pj)])) and for every i ∈ pkq that dig(i)(β) ∈ dom(ρ) and

ρ(dig(i)(β)) = ρi(β). This entails that, for every j ∈ plq, one has:

ρ · digk
1(dig

k
dj([f (pj)])) =

k
i=1

ρ · (dig(i) · digk
dj([f (pj)])) =

k
i=1

ρi · dig
k
dj([f (pj)])

In the same way, we have ρ · digk
1([f (p)]) =

k
i=1 ρ · (dig(i) · [f (p)]) =

k
i=1 ρi · [f (p)]. Then the following equalities hold:

ρ · r = ((−,
k

i=1 ρi · digk
d1

([f (p1)])), . . . , (−,
k

i=1 ρi · digk
dl
([f (pl)])), (+,

k
i=1 ρi · [f (p)])) = ((−,

k
i=1 f

i
0(p1)), . . . ,

(−,
k

i=1 f
i
0(pl)), (+,

k
i=1 f

i
0(p))) = r0. �

Example 49. Consider the LPS Ψ2 of Fig. 1. The experiment (e2, r2) considered in Example 38 is an injective atomic
3-experiment of (Ψ2, ind2). Let ρ ∈ pInj be such that for j ∈ p2q and i ∈ p3q one has ρ(γj, i) = γj,i, where γj,i ∈ A (since
ρ ∈ pInj the γj,is are pairwise different). Then for any29 PS R such that LPS(R) = Ψ2, there exists an experiment e0 = (e2)ρ
of Rwith result r0 = ρ ·r2 = ((−,

2
j=1
3

i=1[γj,i]), (+, [(+, γ1,1, γ2,1), (+, γ1,2, γ2,2), (+, γ1,3, γ2,3)])). Indeed, if we call v
the unique !-cell of R, we can set e0(v) = [[f1, f2, f3]], where fi is the experiment of v’s box obtained by setting fi(p1) = [γ2,i]

and fi(p2) = [γ1,i] (which entirely determines fi). One can easily check that r0 is indeed e0’s result.

Theorem 50. Let (R, ind), (R′, ind’) ∈ PSind, k ∈ N such that k > cosize(LPS(R)) and k > cosize(LPS(R′)). We set E = {r0 ∈

J(R, ind)KAt |r0 is an injective k-point} and E ′
= {r0 ∈ J(R′, ind’)KAt |r0 is an injective k-point}. If E∩E ′

≠ ∅, then (LPS(R), ind) ≃

(LPS(R′), ind’).

Proof. Let r0 be an injective J(R, ind)K-atomic k-point of J(R, ind)K which is also an injective J(R′, ind’)K-atomic k-point of
J(R′, ind’)K. Let (e, r) (resp. (e′, r ′)) be an injective atomic k-experiment of (LPS(R), ind) (resp. (LPS(R′), ind’)). By Fact 48,
there exists ρ ∈ pInj (resp. ρ ′

∈ pInj) such that ρ · r = r0 = ρ ′
· r ′. By Proposition 40 we thus have (LPS(R), ind) ≃

(LPS(R′), ind’). �

Remark 51. Of course, as illustrated by Fig. 5, there are different PS with the same LPS. The k-experiments of two PS30
have the same results if, and only if, the PS have the same LPS, but we do not say anything about the results of the other
experiments.

Corollary 52. Assume A is infinite. Let (R, ind), (R′, ind’) ∈ PSind. If J(R, ind)K = J(R′, ind’)K, then (LPS(R), ind) ≃ (LPS(R′),
ind’).

Proof. For any k ∈ N, we set Ek = {r0 ∈ J(R, ind)KAt | r0 is an injective k-point} and E ′

k = {r0 ∈ J(R′, ind’)KAt | r0 is an injective
k-point}. Since A is infinite, for every k ∈ N, one has Ek ∩ E ′

k ≠ ∅. Apply Theorem 50. �

29 Corollary 54 shows that in this particular case (Ψ2 is a connected graph) there is actually a unique PS R such that LPS(R) = Ψ2 .
30 See footnote 26.
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Fig. 5. Two different PS with the same LPS. The PS R1 , R2 and T are PS of depth 0.

Remark 53. In the proof of Corollary 52, we use the fact that there always exists an JRK-atomic injective k-point in the
interpretation of any PS R and thus there always exists an atomic injective k-experiment of R (see footnote 30) (and we
already noticed in Remark 41 that such an atomic injective k-experiment (see footnote 30) is unique ‘‘up to the names of
the atoms’’).

The reader acquainted with injective k-obsessional experiments (defined in [9,10]) knows that, in the coherent model, not
every PS has an injective k-obsessional experiment: this is precisely the reason why the proof of injectivity of the coherent
model given in [9,10] for the (?℘)LL fragment (already mentioned in the introduction) cannot be extended to MELL; and
still for that reason injectivity of the coherent model fails forMELL as shown in [9,10].

The following corollary is based on a simple and crucial remark, already used in [10] (for the same purpose): since in LPS
the depth of every port is known, given two !-cells v andw with the same depth in a PS (Φ, b) and given an auxiliary port p of
some ?-cell of Φ , there might be an ambiguity on whether p ∈ b(v) or p ∈ b(w) (we would say in the standard terminology
of linear logic proof-nets whether p is an auxiliary door of v or w’s box) only in case Φ is not a connected graph31. Indeed
(using again the standard terminology of linear logic proof-nets), in case Φ is connected, p and v are two ‘‘doors of the same
box’’ iff there exists a path of Φ connecting p and v and crossing only cells with depth greater than the depth of v. More
precisely:

Corollary 54. Assume A is infinite. Let (R, ind), (R′, ind’) ∈ PSind such that LPS(R) is a connected graph. If J(R, ind)K = J(R′,
ind’)K, then (R, ind) ≃ (R′, ind’).

Proof. ByCorollary 52 (LPS(R), ind) ≃ (LPS(R′), ind’). Nownotice thatwhen LPS(R) is connected, there is a unique function
b such that (LPS(R), b) ∈ PS. Indeed, given v ∈ C!(LPS(R)), we have p ∈ b(v) iff the two following conditions hold:

• depthLPS(R)(P
pri
LPS(R)(w)) ≤ depthLPS(R)(P

pri
LPS(R)(v)), where p ∈ Paux

LPS(R)(w)
• there exists a path dp0p starting from the unique auxiliary port p0 of v and ending in p such that for every port q crossed

by dp0p we have that depthLPS(R)(q) > depthLPS(R)(P
pri
LPS(R)(v)). �

As already pointed out in the introduction, the theory of proof-nets is among the striking novelties introduced with
Linear Logic. Right from the start [13], it appeared very natural to first introduce graphs (called like in this paper ‘‘proof-
structures’’) not necessarily representing sequent calculus proofs, and then look for ‘‘intrinsic’’ (usually graph-theoretical)
properties allowing to characterize, among proof-structures, precisely those corresponding to sequent calculus proofs
(in this case the proof-structure is called proof-net). Such a property is called correctness criterion; the most used one is
the Danos–Regnier criterion: a proof-structure π of Multiplicative Linear Logic is a proof-net iff every correctness graph
(every graph obtained from π by erasing one of the two premises of every M link) is acyclic and connected.
As soon as one leaves the purely multiplicative fragment of Linear Logic, things become less simple; for Multiplicative and
Exponential Linear LogicMELL, one often considers (like for example in [6]) a weaker correctness criterion: a proof-structure
is a proof-net when every correctness graph is acyclic (and not necessarily connected); such a criterion corresponds to a
particular version of Linear Logic sequent calculus (see for example [9]). But it is also well-known (see again for example [9])
that in the absence of weakening and⊥ links, the situation is much better, in the sense that one can strengthen the criterion
so as to capture the standard Linear Logic sequent calculus (very much in the style of the purely multiplicative case): in
this framework, an MELL proof-structure is a proof-net iff every correctness graph is not only acyclic, but also connected.
By MELL net we mean in the following corollary the (indexed) untyped version (in the style of [6]) of this strong notion of
proof-net:

Corollary 55. Assume A is infinite. Let R and R′ be two MELL nets without weakening nor ⊥ links. If JRK = JR′K, then R and R′

have the same (cut-free) normal form.

31 Here, we consider Φ ∈ LPS as the following graph: cells and terminal axiom ports of Φ are the nodes and two nodes ν and ν ′ are connected by an edge
iff {p, p′

} is a wire, where p (resp. p′) is a port of ν (resp. ν ′) if ν (resp. ν ′) is a cell, and p = ν (resp. p′
= ν ′) if ν (resp. ν ′) is a terminal axiom port.
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Proof. Let R0 (resp. R′

0) be a cut-free normal form of R (resp. R′). Then JRK = JR0K = JR′

0K = JR′K. Since we are in MELL
without weakening nor ⊥, LPS(R0) (so as LPS(R′

0)) is a connected graph. Apply Corollary 54. �

Remark 56. Theorem 50, Corollaries 52, 54 and 55 hold for the standard typed MELL proof-nets of [10]: in particular if
every propositional variable of the logical language is interpreted by the infinite set A and if π and π ′ are two cut-free typed
proof-nets with atomic axioms, without weakenings nor ⊥

32, and such that JπK = Jπ ′K, then π = π ′33.

5. Proof of Proposition 40

In this last section, we use the tools previously introduced in order to prove the key-proposition (Proposition 40)
concerning only LPS (and not PS anymore). Since we need to consider isomorphisms between several kinds of objects
(elements of D′, t-uples of elements of D′, finite multisets of D′, t-uples of finite multisets of D′,. . . ) we use the notion of
groupoid (Section 5.1).

Sections 5.2–5.4 establish the main results that will be used in the different cases of the proof by induction of
Proposition 40, given in Section 5.5. More precisely, let us come back to the general strategy described in Section 4.1:
following the classification of Definition 43, we already explained in that subsection how from (Φ, ind) and (Φ ′, ind’)
one can obtain (Φ1, ind1) and (Φ ′

1, ind’1) by ‘‘eliminating the same cell(s)’’, in such a way that mes(Φ1) < mes(Φ) and
mes(Φ ′

1) < mes(Φ ′) (this is item 2a of the description given in Section 4.1). We now turn to item 2b of the description
given in Section 4.1: starting from (e, r) and (e′, r ′) of Proposition 40, we want to define some suitable injective atomic
k-experiments (e1, r1) of (Φ1, ind1) and (e′

1, r
′

1) of (Φ
′

1, ind’1) such that ρ1 ·r1 = ρ ′

1 ·r
′

1, for some ρ1, ρ
′

1 ∈ pInj. This ismore or
less obvious except in four of the cases of Definition 43, namely forΦ, Φ ′

∈?cb-PLPS∪?unit-PLPS∪!unit-PLPS∪?-box-PLPS.
WhenΦ, Φ ′

∈?cb-PLPS, the LPS (Φ1, ind1) and (Φ ′

1, ind’1), so as the experiments (e1, r1) and (e′

1, r
′

1), are defined directly
in the proof of Proposition 40; and Section 5.2 is mainly devoted to define an equivalence relation allowing to split the
multiset associated with the principal port of l ∈ C?cb(Φ) ∩ Ct(Φ) in such a way that all the ‘‘possible’’ labels of a given
auxiliary port p of l such that #Φ(p) = 0 are in the same equivalence class.

On the other hand, Sections 5.3 and 5.4 have a similar structure34: we first define the injective atomic k-experiments
(e1, r1) and (e′

1, r
′

1) and we then have a ‘‘purely semantic’’ part (dealing only with points of D′ and not with experiments
anymore), allowing to prove (in the corresponding case of the proof of Proposition 40) that from ρ · r = ρ ′

· r ′ it follows
that ρ1 · r1 = ρ ′

1 · r ′

1, for some ρ1, ρ
′

1 ∈ pInj.
Finally, in Section 5.5 we prove Proposition 40 by induction on the measure introduced in Definition 42.

Let e be an atomic k-experiment of Φ ∈ PLPS and suppose e(p) = α for p ∈ P f(Φ). If α = (+, α1, α2), then since e is
atomic we can say that p is not an axiom port, so that p is necessarily the principal port of a cell of type ⊗. When α = (−, a)
for some a ∈ Mfin(D′), even if we know that p is not an axiom port, there are several possibilities for the ?-cell having p as
principal port. The following fact will be used several times in Section 5.5: it allows (in particular) to distinguish between
?-cells having only auxiliary doors (remember Remark 3) among their premises from the others.
Fact 57. Let Φ ∈ PLPS. Let l ∈ C?(Φ). Let k > aΦ(l). Let P0 ⊆ Paux

Φ (l). Let e be a k-experiment of Φ . We set a =


p∈P0

digk
#Φ (p)([e(p)]). Then k divides Card(a) if, and only if, (∀p ∈ P0) #Φ(p) ≠ 0.

Proof. We have

Card(a) =


p∈P0

k#Φ (p)

= Card({p ∈ P0 | #Φ(p) = 0}) + k


p ∈ P0
#Φ(p) ≠ 0

k#Φ (p)−1

Hence k divides Card(a) if, and only if, k divides Card({p ∈ P0 | #Φ(p) = 0}). Now

Card({p ∈ P0 | #Φ(p) = 0}) ≤ aΦ(l)
< k.

So k divides Card({p ∈ P0 | #Φ(p) = 0}) iff Card({p ∈ P0 | #Φ(p) = 0}) = 0 i.e. (∀p ∈ P0) #Φ(p) ≠ 0. �

5.1. Groupoids

We recall that a groupoid is a category such that any morphism is an iso and that a morphism of groupoids is a functor
between two groupoids. For any groupoid G, we will denote by G0 the class of objects of the groupoid G. In the following,
we sometimes think of a set as a groupoid such that the morphisms are identities on the elements of the set. We now define

32 We still refer here to the strong notion of proof-net corresponding toMELL sequent calculus.
33 More formally, one should write that if J(π, ind)K = J(π ′, ind’)K, then (π, ind) ≃ (π ′, ind’).
34 Notice by the way that since the cases Φ, Φ ′

∈ ?unit-PLPS and Φ, Φ ′
∈ !unit-PLPS are very similar we treat them in the same Section 5.3.
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some useful groupoids; some of them rely on the definition of the subsetD′At ofD′, consisting of those points ofD′ containing
at least one atom (see Definition 64):
• The groupoid D: let D0 = D′ and ρ : α → α′ in D if, and only if, we have ρ ∈ pInj and ρ · α = α′.
• The groupoid sD: let sD0 = D′<ω and ρ : (α1, . . . , αn) → (α′

1, . . . , α
′

n′) in sD if, and only if, we have n = n′ and
(∀i ∈ pnq) ρ : αi → α′

i in D.
• The groupoidM: let M0 = Mfin(D′) and ρ : a → a′ in M if, and only if, ρ · a = a′.
• The groupoid sDM: let sDM0 = (D′<ω

× Mfin(D′)) and ρ : (r, a) → (r ′, a′) in sDM if, and only if, ρ : r → r ′ in sD and
ρ : a → a′ in M.

• the groupoid pM: let pM0 = Pfin(Mfin(D′)) and ρ : a → a′ in pM if, and only if, for any a′
∈ Mfin(D′), we have

a′
∈ a′

⇔ (∃a ∈ a) ρ : a → a′ in M.
• The groupoid sM: let sM0 = Mfin(D′At)

<ω
and ρ : (a1, . . . , an) → (a′

1, . . . , a
′
n) in sM if, and only if, for any i ∈ pnq, we

have ρ : ai → a′

i in M.
• the groupoid psM: let psM0 = Pfin(Mfin(D′At)<ω) and ρ : r → r′ in psM if, and only if, for any r ′

∈ Mfin(D′At)
<ω

, we have
r ′

∈ r′ ⇔ (∃r ∈ r) ρ : r → r ′ in sM.
• the groupoid ppsM: let ppsM0 = Pfin(Pfin(Mfin(D′At)<ω)) and ρ : A → A′ in ppsM if, and only if, for any a′

∈

Pfin(Mfin(D′At)<ω), the following holds: a′
∈ A′

⇔ (∃a ∈ A) ρ : a → a′ in psM.
• the groupoid Bij: objects are sets and morphisms are bijections.

In the sequel, we will write ρ : r → r ′ (referring to a given groupoid) in order to indicate that ρ is an iso between r and
r ′, while we will write r ≃ r ′ meaning that there exists some iso ρ : r → r ′.

Definition 58. We denote by Card the morphism of groupoids M → N defined by: Card(a) =


α∈Supp(a) a(α); and
Card(ρ) = idCard(a) for any ρ : a → a′.

5.2. The case of ?cb-PLPS

The main result of this subsection is Lemma 63, where we establish a precise correspondence between equivalence
classes of a multiset which is the label given by an experiment to the principal port of a ?-cell and the auxiliary ports of this
same ?-cell. So we start by defining, for every multiset a, an equivalence relation on Supp(a) allowing to split a:

Definition 59. Let a ∈ Mfin(E) such that Supp(a) = E . Let R be an equivalence relation on E . We set

a/R = {a0 ∈ Mfin(E) | Supp(a0) ∈ E/R and (∀α ∈ Supp(a0)) a0(α) = a(α)}.

Consider again the LPS Ψ2 of Fig. 1 and the 3-experiment (e2, r2) of (Ψ2, ind2) already defined in Example 38. We have
that (r2, (γ1, 1)), (r2, (γ1, 2)) ∈ sD0 and if we define ρ ∈ pInj by setting ρ(γ1, 1) = (γ1, 2), ρ(γ1, 2) = (γ1, 1), ρ(γ2, 1) =

(γ2, 2), ρ(γ2, 2) = (γ2, 1), ρ(γ3, 1) = (γ3, 1) and ρ(γ3, 2) = (γ3, 2), we have that ρ : (r2, (γ1, 1)) → (r2, (γ1, 2)) in sD35:
the effect of the morphism ρ of sD is to exchange two elements of a1 = [(γ1, 1), (γ2, 1), (γ1, 2), (γ2, 2), (γ1, 3), (γ2, 3)],
without changing r2. This suggests the definition of an equivalence relation on any a ∈ Mfin(D′) (w.r.t. a given r ∈ sD0):

Definition 60. For any (r, a) ∈ sDM0, we set Q(r, a) = a/ ≃, where for α1, α2 ∈ Supp(a) one has α1 ≃ α2 if, and only if,
(r, α1) ≃ (r, α2) in sD.
Fact 61. By extending the definition of Q to the morphisms of sDM in setting Q(ρ) = ρ , we obtain a morphism of groupoids
sDM → pM.

Proof. For any (r, α1), (r, α2) ∈ sD0, for any ρ ∈ pInj such that At’(r, α1, α2) ⊆ dom(ρ), we have (r, α1) ≃ (r, α2) in sD if,
and only if, we have (ρ · r, ρ · α1) ≃ (ρ · r, ρ · α2) in sD. �

We now prove a fact concerning experiments and their results, that allows to ‘‘exchange’’ two indexes (elements of pkq)
without changing the result of a given experiment: thanks to this property we will be able (in Lemma 63) to exchange two
‘‘copies’’ of α ∈ a for some multiset a of D′.

Fact 62. Let k ∈ N. Let (Φ, ind) ∈ PLPSind. Let (e, r) be a k-experiment of (Φ, ind). Let d ∈ N. Let j1, j2 ∈ pkq. Let ρ ∈ pInj
defined by setting

ρ(δ) =

dig(s)(dig(j2)(δ0)) if δ = dig(s)(dig(j1)(δ0)) with s ∈ pkqd and δ0 ∈ A′;
dig(s)(dig(j1)(δ0)) if δ = dig(s)(dig(j2)(δ0)) with s ∈ pkqd and δ0 ∈ A′;
δ otherwise.

Then we have ρ · r = r.

Proof. We first try to explain the intuition behind this fact: whenever, for j ∈ pkq, an atom (γ , conc(σ , conc(j, σ ′)))
(where σ , σ ′

∈ N<ω) occurs36 in the label α ∈ D′ associated by an experiment with a port of some cell, the atom

35 Notice that we do not have, for example, (r2, (γ1, 1)) ≃ (r2, (γ2, 2)) in sD.
36 Recall that Definition 87 of the appendix gives a precise meaning to this notion.
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(γ , conc(σ , conc(i, σ ′))) occurs inα too, for every i ∈ pkq. And (most important) there always exists amultiset a occurring in
α such that βj, βi ∈ a and (γ , conc(σ , conc(j, σ ′))) (resp. (γ , conc(σ , conc(i, σ ′)))) occurs in βj (resp. in βi). This means that
one can always ‘‘exchange’’ (γ , conc(σ , conc(j, σ ′))) and (γ , conc(σ , conc(i, σ ′))), without changing α (and thus without
changing the result r of the experiment ofΦ). This is essentially due to the fact that following Definition 35 of k-experiment,
indexes are introduced precisely when (following the top-down propagation of labels) multisets appear.

More precisely, one can proceed by induction onmes(Φ).
If C!(Φ) ∩ Ct(Φ) ≠ ∅, we choose some l0 ∈ C!(Φ) ∩ Ct(Φ), we set i0 = ind(Ppri

Φ (l0)) and we consider the PLPS Ψ

obtained from Φ by removing l0 and the bijection ind’ : P f(Ψ ) → Card(P f(Ψ )) defined by ind’ = ind ◦ cΦ . We have
r(i0) = (+, digk

1([β])) with r ′
= (r(1), . . . , r(i0 − 1), β, r(i0 + 1), . . . , r(n)) a result of a k-experiment of (Ψ , ind’). By

induction hypothesis, we have ρ · r ′
= r ′.

For d = 0, we clearly have ρ · digk
1([β]) = digk

1([β]), hence ρ · r = r .
For d > 0, we consider ρ ′

∈ pInj defined by

ρ ′(δ) =

dig(s′)(dig(j2)(δ0)) if δ = dig(s′)(dig(j1)(δ0)) with s′ ∈ pkqd−1 and δ0 ∈ A′;
dig(s′)(dig(j1)(δ0)) if δ = dig(s′)(dig(j2)(δ0)) with s′ ∈ pkqd−1 and δ0 ∈ A′;
δ otherwise.

Again by induction hypothesis, we have ρ ′
·β = β , hence, for any j ∈ pkq, we have ρ ·(dig(j)·β) = dig(j)·(ρ ′

·β) = dig(j)·β ,
so ρ · digk

1([β]) = digk
1([β]).

If there exists l0 ∈ C?(Φ) ∩ Ct(Φ) such that for any auxiliary port p of l0, we have #Φ(p) > 0, we proceed in the same
way as before, except that instead of applying the induction hypothesis on the PLPS obtained by removing l0, we apply the
induction hypothesis on the PLPS obtained by decreasing the function # on the auxiliary ports of l0.

The other cases are left to the reader. �

Suppose (e, r) is an experiment of (Φ, ind) ∈ PLPSind, suppose e(Ppri
Φ (l)) = (−, a) for some l ∈ C?(Φ) ∩ Ct(Φ)

and suppose that e(p) = α for p ∈ Paux
Φ (l) such that #Φ(p) = d. Then the idea is that (like we did in the example

before Definition 60) one can exchange two ‘‘copies’’ of α in a without changing r: the intuition is that for every α1, α2 ∈

Supp(digk
d([α])) one has (r, α1) ≃ (r, α2) in sD. More precisely, the following lemma holds:

Lemma 63. Let k ∈ N. Let (Φ, ind) ∈ PLPSind. Let l ∈ C?(Φ). Let (e, r) be a k-experiment of (Φ, ind). Let a ∈ Mfin(D′) such
that e(Ppri

Φ (l)) = (−, a). Let a0 ∈ Q(r, a). Then there exists P0 ⊆ Paux
Φ (l) such that a0 =


q∈P0

digk
#Φ (q)(e(q)).

Proof. We prove, by induction on d and using Fact 62, that for any d ∈ N, for any α ∈ D′, for any α1, α2 ∈ Supp(digk
d([α])),

we have (r, α1) ≃ (r, α2) in sD. �

5.3. The case of ?unit-PLPS and !unit-PLPS

In the first part of this subsection (and similarly in the first part of the following Section 5.4), we first define some suitable
injective atomic k-experiments (e1, r1) of (Φ1, ind1) and (e′

1, r
′

1) of (Φ
′

1, ind’1)
37, andwe then establish some purely semantic

statements, thatwill allow in the final Section 5.5 to show that r1 ≃ r ′

1 (and thus apply the induction hypothesis). Notice that
in the second part of Sections 5.3 and 5.4 we often refer to k-experiments and LPS, but only in discussions and examples:
the intuition is that the points of D′ we consider in mathematical statements are results of k-experiments of LPS, but the
statements themselves hold without any reference to experiments.

For every ρ ∈ pInj (Definition 32) and for every α ∈ D′, when At’(α) = ∅, one has ρ · α = α. We will use in the sequel
the remark that any multiset b ∈ Mfin(D′) can be decomposed into a (possibly empty) multiset bAt in which atoms occur
and a (possibly empty) multiset b∗ in which no atom occurs: b = bAt + b∗, where bAt and b∗ are precisely defined as follows.

Definition 64. For any D0 ⊆ D′, we set D0
At

= {α ∈ D0 | At’(α) ≠ ∅} and D0
∗

= {α ∈ D0 | At’(α) = ∅}.
For any a ∈ Mfin(D′), we set aAt = a Supp(a)At and a∗

= a Supp(a)∗ .

When (for someΦ ∈ PLPS) ‘‘above’’ an auxiliary port p of l ∈ C?(Φ)∪C!(Φ)38 there are no axiom ports, it is obvious that
whatever k-experiment e of Φ one considers, the label α = e(p) of p contains no atom. And the converse holds too when
e is atomic: if At’(e(p)) = ∅, there are no axiom ports ‘‘above’’ p. This implies that e(Ppri

Φ (l)) = (ι, b) for some b ∈ Mfin(D′)
such that b∗

≠ [] iff ‘‘above’’ one of the auxiliary ports of l there are no axiom ports, as the following fact shows.

Fact 65. Let k ≥ 1, let Φ ∈ PLPS and let e be an atomic k-experiment of Φ . Suppose that l ∈ C(Φ) and e(Ppri
Φ (l)) = (ι, b) for

some b ∈ Mfin(D′).
We have that b∗

≠ [] iff there exists p ∈ Paux
Φ (l) such that for every q ≥Φ p one has q /∈


Ax(Φ).

37 Notations still refer to the general strategy described in Section 4.1.
38 In case l ∈ C!(Φ) such a premise is the unique premise of l.
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Proof. Since e is atomic39 and k ≥ 1, we have At’(e(q)) ≠ ∅ for any q ∈


Ax(Φ), hence one can easily prove, by induction
on the number of ports ‘‘above’’ the port p of Φ (that is on Card({q ∈ P (Φ) / q ≥Φ p})), that there exists q ≥Φ p such that
q ∈


Ax(Φ) iff At’(e(p)) ≠ ∅. This immediately yields the conclusion: for every p ∈ Paux

Φ (l) there exists q ≥Φ p such that
q ∈


Ax(Φ) iff At’(α) ≠ ∅ for every α ∈ b iff b∗

= []. �

The following Fact 66 and Fact 68 are similar in spirit to Fact 71 of the following Section 5.4: they allow to obtain a
k-experiment e[l0] of Φ[l0] from a k-experiment e of Φ ∈ LPS, and they will be used in the cases Φ ∈ !unit-PLPS and
Φ ∈ ?unit-PLPS of the proof of Proposition 40. In both the facts the hypothesis a∗

≠ [] (for a ∈ Mfin(D′) such that
e(p) = (ι, a) with p port of Φ) is crucial: it implies that ‘‘above’’ p there is an ‘‘isolated subgraph’’, which allows to apply the
transformations defined in Section 4.1, thus shrinking the measure of Φ .

Fact 66. Let k ≥ 1. Let R = (Φ, ind) ∈ LPSind and let (e, r) be an atomic k-experiment of (Φ, ind). Let l0 ∈ C!(Φ) ∩ Ct(Φ)
and β ∈ D′ such that e(Ppri

Φ (l0)) = (+, digk
1([β])) and (digk

1([β]))
∗

≠ []. Then mes(Φ[l0]) < mes(Φ) and there exists a unique
atomic k-experiment (e[l0], r[l0]) of R[l0] such that

• for any p ∈ (P (Φ) \ P f(Φ)) ∩ P (Φ[l0]), we have e[l0](p) = e(p);
•

r[l0](i) =


r(i) if i ≠ ind(Ppri

Φ (l0));
β if i = ind(Ppri

Φ (l0)).
Moreover, if e is injective, then e[l0] is injective.

Proof. By Fact 65, if we call p the unique auxiliary port of l0, we have that for every q ≥Φ p one has q /∈


Ax(Φ), that is
{p ∈


Ax(Φ) | p ≥Φ Ppri

Φ (l)} = ∅: this implies that Φ ∈ !unit-PLPS, thus mes(Φ[l0]) < mes(Φ).
We then set e[l0](p) = e(p) for any p ∈ P (Φ[l0]). �

Remark 67. If e is a k-experiment of Φ ∈ PLPS and l ∈ C?(Φ), we know by Definition 35 that e(Ppri
Φ (l)) = (−, a), where

a =


p∈PauxΦ (l) dig
k
#Φ (p)([e(p)]).When l ∈ C?cauxd(Φ)wehave#Φ(p) ≥ 1 for every p ∈ Paux

Φ (l), which implies that a = digk
1(b)

for b =


p∈PauxΦ (l) dig
k
#Φ (p)−1([e(p)]). It then follows that when Φ ∈ ?unit-PLPS there always exists l ∈ Ct(Φ) such that

e(Ppri
Φ (l)) = (−, digk

1(b)) for some b ∈ Mfin(D′).

Fact 68. Let k > 1. Let R = (Φ, ind) ∈ LPSind and let (e, r) be an atomic k-experiment of R. Let l0 ∈ (C?(Φ)\C?cb(Φ))∩Ct(Φ)

and b ∈ Mfin(D′) such that e(Ppri
Φ (l0)) = (−, digk

1(b)) and (digk
1(b))

∗
≠ []. Then mes(Φ[l0]) < mes(Φ) and there exists a unique

atomic k-experiment (e[l0], r[l0]) of R[l0] such that
• for any p ∈ (P (Φ) \ P f(Φ)) ∩ P (Φ[l0]), we have e[l0](p) = e(p);
•

r[l0](i) =


r(i) if i ≠ ind(Ppri

Φ (l0));
(−, (digk

1(b))
At

+ b∗) if i = ind(Ppri
Φ (l0)).

Moreover, if e is injective then e[l0] is injective.

Proof. By Fact 65 there exists p ∈ Paux
Φ (l0) such that for every q ≥Φ p one has q /∈


Ax(Φ). From k > 1, e(Ppri

Φ (l0)) =

(−, digk
1(b)) and (digk

1(b))
∗

≠ []we deduce that l0 /∈ C?w(Φ)∪C?d(Φ), and since l0 ∉ C?cb(Φ), we have l0 ∈ C?cauxd(Φ) and
thus #Φ(p) ≥ 1. Summing up, we have the existence of p ∈ Paux

Φ (l0) such that #Φ(p) ≥ 1 and {q ∈


Ax(Φ) | q ≥Φ p} = ∅:
this implies that l0 ∈ C?unit(Φ) and Φ ∈ ?unit-PLPS, thusmes(Φ[l0]) < mes(Φ).

We then set e[l0](p) =


e(p) if p ≠ Ppri

Φ (l0);
(−, (digk

1(b))
At

+ b∗) if p = Ppri
Φ (l0).

�

We now prove two ‘‘purely semantic’’ facts, that will be used in the following cases of the proof of Proposition 40: the
case ?unit-PLPS and the case !unit-PLPS. The first one intuitively states that given an (injective atomic) experiment e (resp.
e′) of Φ (resp. Φ ′) such that e(Ppri

Φ (l)) ≃ e′(Ppri
Φ′(l′)) for some suitable terminal link l (resp. l′), there exists p ∈ P f(Φ[l]) such

that for the ‘‘corresponding’’ p′
∈ P f(Φ ′

[l′]) one has e[l](p) ≃ e′
[l′](p′).

Fact 69. Let k ≥ 1. Let b, b′
∈ Mfin(D′). Let ρ : digk

1(b) → digk
1(b

′) inM. Thenwe have ρ : b∗
+(digk

1(b))
At

→ b′∗
+(digk

1(b
′))At

inM.

Proof. Wehave digk
1(b

∗) = (digk
1(b))

∗
= (digk

1(b
′))

∗
= digk

1(b
′∗), hence (since k ≠ 0) b∗

= b′∗. Fromρ : digk
1(b) → digk

1(b
′)

one deduces that ρ : (digk
1(b))

At
→ (digk

1(b
′))At, and since for ρ ∈ pInjwe already noticed that ρ(b∗) = b∗, we can conclude

that ρ : b∗
+ (digk

1(b))
At

→ b∗
+ (digk

1(b
′))At = b′∗

+ (digk
1(b

′))At. �

Fact 70. Let k ∈ N. Let β ∈ D′ such that (digk
1([β]))∗ ≠ []. Then ([β])∗ = [β].

Proof. From (digk
1([β]))∗ ≠ [], we deduce that At’(β) = ∅. �

39 In case e is not atomic, one might have for example e(q) = (+, ∗) for some q ∈


Ax(Φ).
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5.4. The case of ?-box-PLPS ∩ LPS

The last case to analyze (Φ ∈ ?-box-PLPS ∩ LPS) is the most complicated one. The first part of this subsection allows
to define a k-experiment e of Φ from a k-experiment e of the LPS Φ (where Φ has been defined in Section 4.1, where we
already noticed thatmes(Φ) < mes(Φ)) and consists only of Fact 71. All the rest of the subsection is ‘‘purely semantic’’.

Fact 71. Let k ∈ N. Let (Φ, ind) ∈ LPSind such that Φ ∈ ?-box-PLPS and let (e, r) be a k-experiment of (Φ, ind). Then there
exists a unique k-experiment (e, r) of (Φ, ind) = (Φ, ind) such that

• for any p ∈ (P (Φ) \ P f(Φ)) ∩ P (Φ), we have e(p) = e(p);
• let i ∈ pP f(Φ)q; if r(i) = (+, a), then there exists α ∈ D′ such that r(i) = α and a =

k
j=1 dig(j) · [α]; if r(i) = (−, a),

then there exists b ∈ Mfin(D′) such that r(i) = (−, b) and a =
k

j=1 dig(j) · b.
Moreover, if e is atomic (resp. injective), then e is atomic (resp. injective).

Proof. For any l ∈ C?cauxd(Φ) ∩ Ct(Φ), we have

e(Ppri
Φ (l)) =


p∈PauxΦ (l)

digk
#Φ (p)([e(p)])

=

k
j=1

dig(j) ·


p∈PauxΦ (l)

digk
#Φ (p)−1([e(p)]).

For any l ∈ C!(Φ) ∩ Ct(Φ), we have

e(Ppri
Φ (l)) =


p∈PauxΦ (l)

digk
1([e(p)])

=

k
j=1

dig(j) · [e(q)], where {q} = Paux
Φ (l). �

In the following informal discussion, we fix an LPS Φ and an atomic k-experiment (e, r) of (Φ, ind). Suppose Φ consists
of 2 cells: a !-cell and a ?-cell with a unique auxiliary port p such that #Φ(p) = 1, and suppose that the two auxiliary ports of
the two cells are connected by an axiom (in the language of the usual theory of linear logic proof-nets, Φ would correspond
to an axiom link inside an exponential box). In this case r = ((−, digk

1([δ])), (+, digk
1([δ]))) ∈ D′At

× D′At for some δ ∈ A.
If α, α′

∈ Supp(digk
1([δ])) such that α ≠ α′, then At’(α) ∩ At’(α′) = ∅: two elements of the multiset associated with the

principal port of the ?-cell have no atom in common, since they ‘‘come from’’ two different copies of the content of the box.
Suppose now that, more generally, Φ ∈ ?-box-PLPS ∩ LPS has two conclusions, one is the principal port of a !-cell and

the other one is the principal port of a ?-cell, but now this last cell has several auxiliary ports and for every such port p one
has #Φ(p) ≥ 1; suppose also that the graph obtained by removing this ?-cell is connected (in the language of the usual
theory of linear logic proof-nets, Φ would now correspond to a connected proof-net inside an exponential box, where the
?-conclusions of the box are contracted): an example of such an LPS is in Fig. 1 (see also the following Example 75). The
previous remark can be generalized to such an LPS: let a (resp. b) be the multiset associated by e with the principal port of
the ?-cell (resp. !-cell) conclusion of Φ; we have that α, α′

∈ Supp(a) ‘‘come from’’ the same copy of the content of the box
if and only if there is a ‘‘bridge’’ between α and α′40, meaning that there is a sequence α0, . . . , αn such that αi ∈ Supp(a+ b)
and α0 = α, αn = α′ and for any i ∈ pnq, we have At’(αi−1) ∩ At’(αi) ≠ ∅. This means that one can split the multiset a into
equivalence classes given by the relation ‘‘being connected by a bridge’’, and every equivalence class will identify a copy of
the box.
For general Φ ∈ ?-box-PLPS ∩ LPS, the situation is more complex: it might be the case that the elements α and α′ above
come from the same copy of a box even though they are not connected by a bridge. On the other hand, the converse still
holds: when there is a bridge between α and α′ they do come from the same copy of the box. We thus define a function sB,
that splits the result r of the experiment e into equivalence classes of this relation.

Definition 72. For any D0 ⊆ D′At, we define the equivalence relation ≃D0 on D0 as follows: α ≃D0 α′ if, and only if, there
exist α0, . . . , αn ∈ D0 such that α0 = α, αn = α′ and for any i ∈ pnq, we have At’(αi−1) ∩ At’(αi) ≠ ∅.

Definition 73. We denote by B the function Pfin(D′At) → Pfin(Pfin(D′At)) defined by B(D0) = D0/ ≃D0 .

The function sB that we are going to define ‘‘splits’’ a t-uple of multisets, following the equivalence classes of the ‘‘bridge’’
equivalence relation:

Definition 74. We denote by sB the morphism of groupoids sM → psM defined by: sB(a1, . . . , an) = {(a1 Supp(a1)∩a, . . . ,

an Supp(an)∩a) | a ∈ B(Supp(
n

i=1 ai))}; and sB(ρ) = ρ.

40 Notice that by Definition 43 Φ /∈ ?unit-PLPS ∪ !unit-PLPS, so that α, α′
∈ D′At .
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Example 75. Let a1 and a2 be as in Example 38. Then we have B(Supp(a1 + a2)) = {c1, c2, c3} with cz = {(γ1, z), (γ2, z),
(+, (γ1, z), (γ2, z))} and we have sB(a1, a2) = {r1, r2, r3} with rz = ([(γ1, z), (γ2, z)], [(+, (γ1, z), (γ2, z))]). Notice that
every element of sB(a1, a2) corresponds to a copy of the box.

Given r = (a1, . . . , an) ∈ sM0 and two different equivalence classes a, b ∈ B(Supp(
n

i=1 ai)), we clearly have that
At’(a) ∩ At’(b) = ∅. This implies that any element of the restriction of r to the elements of a has no atom in common with
any element of the restriction of r to the elements of b, as the following fact precisely states. A consequence that will be used
in Lemma 81 is that if for some r, r ′

∈ sM0 one has ρ : sB(r) → sB(r ′) in psM, then ρ : r → r ′ in sM.
Fact 76. Let r ∈ sM0. For any r1, r2 ∈ sB(r), we have At’(r1) ∩ At’(r2) ≠ ∅ ⇒ r1 = r2.
Proof. Suppose r = (a1, . . . , an), r1 = (c1, . . . , cn) and r2 = (d1, . . . , dn). By Definition 74, for every i ∈ {1, . . . , n}we have
that ci = ai Supp(ai)∩a and di = ai Supp(ai)∩b for some a, b ∈ B(Supp(

n
i=1 ai)).

If At’(r1) ∩ At’(r2) ≠ ∅, then since At’(r1) ⊆ At’(a) and At’(r2) ⊆ At’(b), we have At’(a) ∩ At’(b) ≠ ∅, which means that
At’(ξ) ∩ At’(η) ≠ ∅ for some ξ ∈ a and η ∈ b: this implies by Definition 72 that ξ ≃Supp(

n
i=1 ai) η and thus a = b and

r1 = r2. �

In the language of the usual theory of linear logic proof-nets, given a proof-net one can ‘‘box it’’; we have generalized this
boxing operation in the framework of LPS: for Φ ∈ ?-box-PLPS∩ LPS this corresponds to the passage from Φ to Φ . From an
experiment (e1, r1) of (Φ, ind), one can naturally obtain an experiment (e, r) of (Φ, ind). The following lemma (intuitively)
relates the effect of applying the splitting function sB after boxing to the effect of applying the splitting function sB before
boxing.
Lemma 77. Let k, n ∈ N such that k > 0. Let b1, . . . , bn ∈ Mfin(D′At). We have:

sB(digk
1(b1), . . . , dig

k
1(bn)) = {(dig(j0) · f1, . . . , dig(j0) · fn)| j0 ∈ pkq and (f1, . . . , fn) ∈ sB(b1, . . . , bn)}

Proof. For any b ∈ Mfin(D′At), we have B(Supp(digk
1(b))) = B(Supp(

k
j=1 dig(j) ·b)) = {{dig(j0) ·β |β ∈ b}| j0 ∈ pkq and b ∈

B(Supp(b))}. Now notice that digk
1(
n

i=1 bi) =
n

i=1 dig
k
1(bi); hence

B


Supp


n

i=1

digk
1(bi)


= B


Supp


digk

1


n

i=1

bi



=


{dig(j0) · β | β ∈ b} | j0 ∈ pkq and b ∈ B


Supp


n

i=1

bi


.

Thus

sB(digk
1(b1), . . . , dig

k
1(bn)) =


(digk

1(b1) Supp(digk1(b1))∩a, . . . , dig
k
1(bn) Supp(digk1(bn))∩a) | a ∈ B


Supp


n

i=1

digk
1(bi)



=


(digk

1(b1) Supp(digk1(b1))∩{dig(j0)·β | β∈b}, . . . , dig
k
1(bn) Supp(digk1(bn))∩{dig(j0)·β | β∈b}) |

j0 ∈ pkq and b ∈ B


Supp


n

i=1

bi



=


(digk

1(b1) {dig(j0)·β | β∈Supp(b1)∩b}, . . . , dig
k
1(bn) {dig(j0)·β | β∈Supp(bn)∩b}) |

j0 ∈ pkq and b ∈ B


Supp


n

i=1

bi



=


((dig(j0) · b1) {dig(j0)·β | β∈Supp(b1)∩b}, . . . , (dig(j0) · bn) {dig(j0)·β | β∈Supp(bn)∩b}) |

j0 ∈ pkq and b ∈ B


Supp


n

i=1

bi



=

(dig(j0) · b1 Supp(b1)∩b, . . . , dig(j0) · bn Supp(bn)∩b)


j0 ∈ pkq and

b ∈ B


Supp


n

i=1

bi

 
= {(dig(j0) · f1, . . . , dig(j0) · fn) | j0 ∈ pkq and (f1, . . . , fn) ∈ sB(b1, . . . , bn)}. �
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Fig. 6. Example described in Example 80 illustrating the case ?-box-PLPS ∩ LPS. Let Φ ∈ PLPS be as in the figure and such that #Φ (p1) = 1 = #Φ (p2).
We have Φ ∈ ?-box-PLPS ∩ LPS.

Our aim is now to prove Lemma 81: both the following Definition 78 and Fact 79 are just tools to prove this result (in
order to get some intuition, see Example 80).

Definition 78. We denote by R the morphism of groupoids psM → ppsM defined by: R(a) = a/ ≃sM, where r ≃sM r ′ if,
and only if, r ≃ r ′ in sM; and R(ρ) = ρ.

Fact 79. Let k ∈ N \ {0}. Let r, r ′
∈ sM0. Let b ∈ R(sB(r)), b′

∈ R(sB(r ′)) such that {dig(j0) · r0 | j0 ∈ pkq and r0 ∈ b} ≃

{dig(j0) · r ′

0 | j0 ∈ pkq and r ′

0 ∈ b′
} in psM. Then we have b ≃ b′ in psM.

Proof. Let ρ be the morphism

{dig(j0) · r0 | j0 ∈ pkq and r0 ∈ b} → {dig(j0) · r ′

0 | j0 ∈ pkq and r ′

0 ∈ b′
}

in psM. Let r0 ∈ b. Let r ′

0 ∈ b′ and j0 ∈ pkq such that ρ : dig(1) · r0 → dig(j0) · r ′

0 in sM; then we have r0 ≃ r ′

0 in sM. Thus
the following holds:

• there exists r0 ∈ b, r ′

0 ∈ b′ such that r0 ≃ r ′

0 in sM;
• for any r1, r2 ∈ b, we have r1 ≃ r2 in sM and for any r ′

1, r
′

2 ∈ b′, r ′

1 ≃ r ′

2 in sM;
• for any r1, r2 ∈ b, we have At’(r1)∩At’(r2) ≠ ∅ ⇒ r1 = r2 and for any r ′

1, r
′

2 ∈ b′, we have At’(r ′

1)∩At’(r ′

2) ≠ ∅ ⇒ r ′

1 = r ′

2
(by Fact 76);

• Card(b) = Card(b′).
Hence b ≃ b′ in psM. Indeed: let τ : r0 → r ′

0 in sM and let ϕ : b → b′ in Bij; for any r1 ∈ b, let τr1 : r1 → r0 in sM; for
any r ′

1 ∈ b′, let τ ′

r ′1
: r ′

0 → r ′

1 in sM; for any r1 ∈ b, we set ρr1 = τ ′

ϕ(r1)
◦ τ ◦ τr1 ; we define ρ ′

: b → b′ in psM by setting

ρ ′(δ) = ρr1(δ) if δ ∈ At’(r1). �

Example 80. In order to help the reader to get some intuition of what we want to do here, let us consider the LPS Φ

represented in Fig. 6: the contraction of two auxiliary doors p1 and p2 such that #Φ(p1) = #Φ(p2) = 1; above each
auxiliary door, a M; above each M, an axiom. Let e = e′ be the injective atomic k-experiment of Φ such that the label
associated by e with every auxiliary port of the ?-cell is (−, γz, γz), where γz ∈ A, z ∈ p2q and γ1 ≠ γ2. The result r = r ′ is
(−,


1≤j≤k,1≤z≤2[(−, (γz, j), (γz, j))]). We have ρ : a → a′ in psM, where a =


1≤j≤k,1≤z≤2{([(−, (γz, j), (γz, j))])} = a′,

with ρ that can send any (γz, j) to any (γz′ , j′). Fact 79 will be useful to deduce very generally that in situations of this kind,
we have b ≃ b′ in psM, where here b = {([(−, γ1, γ1)]), ([(−, γ2, γ2)])} = b′.

The following lemma is the crucial step allowing to apply the induction hypothesis in the proof of the key-Proposition 40
in the ?-box-PLPS case: it intuitively states that if there is an isomorphism between the results of two experiments of
Φ1, Φ2 ∈ ?-box-PLPS ∩ LPS, then there exists also an isomorphism between the results of two experiments of Φ1 and Φ2.
In the proof, we denote by U the forgetful functor ppsM → Bij.

Lemma 81. Let k, n ∈ N such that k > 0. Let b1, . . . , bn, b′

1, . . . , b
′
n ∈ Mfin(D′At) such that (digk

1(b1), . . . , dig
k
1(bn)) ≃

(digk
1(b

′

1), . . . , dig
k
1(b

′
n)) in sM. Then we have (b1, . . . , bn) ≃ (b′

1, . . . , b
′
n) in sM.

Proof. We set

a = {dig(j0) · (f1, . . . , fn) | j0 ∈ pkq and (f1, . . . , fn) ∈ sB(b1, . . . , bn)}

and

a′
= {dig(j0) · (f ′

1, . . . , f
′

n) | j0 ∈ pkq and (f ′

1, . . . , f
′

n) ∈ sB(b′

1, . . . , b
′

n)}.

Since sB is a morphism of groupoids, by Lemma 77, there exists ρ : a → a′ in psM.
Since for any r, r ′

∈ sM0, for any j1, j2 ∈ pkq, we have dig(j1) · r ≃ dig(j2) · r ′ in sM if, and only if, r ≃ r ′ in sM, we can
define ϕ : U(R(sB(b1, . . . , bn))) → U(R(a)) in Bij by setting ϕ({(f 11 , . . . , f 1n ), . . . , (f q1 , . . . , f qn )}) = {dig(j) · (f z1 , . . . , f zn ) | j ∈

pkq and z ∈ pqq} and ϕ′
: U(R(sB(b′

1, . . . , b
′
n))) → U(R(a′)) in Bij by setting ϕ′({(f ′1

1, . . . , f
′1
n), . . . , (f

′q
1, . . . , f

′q
n)}) =

{dig(j) · (f ′z
1, . . . , f

′z
n) | j ∈ pkq and z ∈ pqq}. We have ϕ′−1

◦ U(R(ρ)) ◦ ϕ : U(R(sB(b1, . . . , bn))) → U(R(sB(b′

1, . . . , b
′
n)))

in Bij.
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For any b ∈ U(R(sB(b1, . . . , bn))), we have ρ : ϕ(b) = {dig(j0) · r0 | j0 ∈ pkq and r0 ∈ b} → {dig(j0) · r ′

0 | j0 ∈ pkq and r ′

0 ∈

(ϕ′−1
◦ U(R(ρ)) ◦ ϕ)(b)} = (U(R(ρ)) ◦ ϕ)(b) in psM. Hence by Fact 79, for any b ∈ U(R(sB(b1, . . . , bn))) there exists

τb : b → (ϕ′−1
◦ U(R(ρ)) ◦ ϕ)(b) in psM.

Now, by applying a first time Fact 76, we can define an application

τ :


r∈sB(b1,...,bn)

At’(r) →


r ′∈sB(b′

1,...,b
′
n)

At’(r ′)

by setting τ(δ) = τb(δ) for δ ∈ At’(r), r ∈ b and b ∈ R(sB(b1, . . . , bn)).
We thus obtain τ : R(sB(b1, . . . , bn)) → R(sB(b′

1, . . . , b
′
n)) in ppsM. By applying a second time Fact 76, we obtain that τ

is a morphism
R(sB(b1, . . . , bn)) = sB(b1, . . . , bn) → sB(b′

1, . . . , b
′

n) =


R(sB(b′

1, . . . , b
′

n))

in psM. Lastly, by applying a third time Fact 76, we obtain τ : (b1, . . . , bn) → (b′

1, . . . , b
′
n) in sM. �

5.5. Key-Proposition

We can now conclude the paper by giving the complete proof of the missing result:

Proposition 40. Let (Φ, ind), (Φ ′, ind’) ∈ LPSind, let k > cosize(Φ), cosize(Φ ′), let (e, r) (resp. (e′, r ′)) be an atomic injective
k-experiment of (Φ, ind) (resp. (Φ ′, ind’)). If r ≃ r ′ in sD, then (Φ, ind) ≃ (Φ ′, ind’).

Proof. The proof is by induction on mes(Φ). We have mes(Φ) = (0, 0) if, and only if, Φ ∈ ∅-PLPS; in this case, it is obvi-
ous that we have (Φ, ind) ≃ (Φ ′, ind’). If mes(Φ) > (0, 0), then let ρ : r → r ′ in sD, we set n = Card(P f(Φ)) and we
distinguish between the several cases.

• In the case where Φ ∈ ax-PLPS, let w = {p0, q0} ∈ Axi(Φ) and let i0, j0 ∈ pnq such that ind(p0) = i0 and ind(q0) = j0.
Let p′

0, q
′

0 ∈ P f(Φ ′) such that ind’(p′

0) = i0 and ind’(q′

0) = j0. As e is atomic and e′ is injective, we have w′
= {p′

0, q
′

0} ∈

Axi(Φ ′).
Let (Φ1, ind1) ∈ PLPSind (resp. (Φ ′

1, ind’1) ∈ PLPSind) obtained from (Φ, ind) (resp. (Φ ′, ind’)) by removing w (resp.
w′).41 Since Φ, Φ ′

∈ LPS, we have Φ1, Φ ′

1 ∈ LPS. We set e1 = e P (Φ1) and e′

1 = e′
P (Φ′

1)
. We set r1 = e ◦ ind1

−1 and
r ′

1 = e′
◦ind’1−1: it is immediate that (e1, r1) is an injective atomic experiment of (Φ1, ind1) and that (e′

1, r
′

1) is an injective
atomic experiment of (Φ ′

1, ind’1); and from ρ : r → r ′ in sD one deduces ρ : r1 → r ′

1 in sD. Notice that mes(Φ1) <
mes(Φ): by induction hypothesis we have (Φ1, ind1) ≃ (Φ ′

1, ind’1), which obviously implies (Φ, ind) ≃ (Φ ′, ind’).
• In the casewhereΦ ∈?cb-PLPS, let l0 ∈ C?cb(Φ)∩Ct(Φ) and let i0 ∈ pnq such that ind(Ppri

Φ (l0)) = i0. As e′ is atomic, there
exists l′0 ∈ C?(Φ ′)∩Ct(Φ ′) such that Ppri

Φ′(l′0) = ind’−1(i0). Let a ∈ Mfin(D′) such that e(Ppri
Φ (l0)) = (−, a). Let a′

∈ Mfin(D′)
such that ρ · (−, a) = (−, a′). Let p ∈ Paux

Φ (l0) such that #Φ(p) = 0. We set β = e(p). We have β ∈ Supp(a), hence there
exists a0 ∈ Q(r, a) such that β ∈ Supp(a0). By Lemma 63, there existsP0 ⊆ Paux

Φ (l0) such that a0 =


q∈P0
digk

#Φ (q)(e(q)).
We have p ∈ P0 (otherwise, we would have a(β) > a0(β)). Hence, by Fact 57, k does not divide Card(a0) = Card(ρ · a0).
As we have ρ : (r, a) → (r ′, a′) in sDM and by Fact 61 Q is a morphism of groupoids, we have ρ · a0 ∈ Q(r ′, a′). Hence,
by Lemma 63, there exists P ′

0 ⊆ Paux
Φ′ (l′0) such that ρ · a0 =


q∈P ′

0
digk

#Φ′ (q)(e
′(q)). By Fact 57, there exists p′

∈ P ′

0 such
that #Φ′(p′) = 0. Let β ′

= e′(p′); we have (r ′, ρ · β) ≃ (r ′, β ′) and (r, β) ≃ (r ′, ρ · β) in sD, hence (r, β) ≃ (r ′, β ′)
in sD.

Let Φ1 ∈ PLPS (resp. Φ ′

1 ∈ PLPS) obtained from Φ (resp. Φ ′) by removing p (resp. p′) from the auxiliary ports of l0
(resp. l′0).

42 Notice thatmes(Φ1) < mes(Φ). Both Φ1 and Φ ′

1 have n+ 1 free ports: for Φ1, those of Φ and a new free port
p0; for Φ ′

1, those of Φ ′ and a new free port p′

0. We set

ind1(q) =


ind(q) if q ≠ p0;
n + 1 if q = p0;

and ind’1(q) =


ind’(q) if q ≠ p′

0;
n + 1 if q = p′

0.

We have (Φ1, ind1), (Φ
′

1, ind’1) ∈ LPSind. For any q ∈ P (Φ1) \ {Ppri
Φ1

(l0)}, we set e1(q) = e(q). Let b ∈ Mfin(D′) such
that a = b+[β]; we set e1(P

pri
Φ1

(l0)) = (−, b). For any q ∈ P (Φ ′

1) \ {Ppri
Φ′
1
(l′0)}, we set e′

1(q) = e′(q). Let b′
∈ Mfin(D′) such

41 See the appendix for a formal definition of (Φ1, ind1) and (Φ ′

1, ind’1).
42 See the appendix for a formal definition of (Φ1, ind1) and (Φ ′

1, ind’1).
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that a′
= b′

+ [β ′
]; we set e′

1(P
pri
Φ′
1
(l′0)) = (−, b′).

We set r1(i) =

r(i) if i /∈ {i0, n + 1};
(−, b) if i = i0;
β if i = n + 1.

We set r ′

1(i) =

r ′(i) if i /∈ {i0, n + 1};
(−, b′) if i = i0;
β ′ if i = n + 1.

Since (e, r) (resp. (e′, r ′)) is an atomic injective k-experiment of (Φ, ind) (resp. (Φ ′, ind’)), (e1, r1) (resp. (e′

1, r
′

1)) is
an atomic injective k-experiment of (Φ1, ind1) (resp. (Φ ′

1, ind’1)) and since (r, β) ≃ (r ′, β ′) in sD we have r1 ≃ r ′

1 in
sD. By induction hypothesis we deduce that (Φ1, ind1) ≃ (Φ ′

1, ind’1), from which the conclusion (Φ, ind) ≃ (Φ ′, ind’)
immediately follows.

• In the case where Φ ∈ !unit-PLPS, by Fact 65, there exists l0 ∈ C!(Φ) ∩ Ct(Φ) and β ∈ D′ such that e(Ppri
Φ (l0)) = (+,

digk
1([β])) and (digk

1([β]))
∗

≠ []. As e′ is atomic, there exists l′0 ∈ C!(Φ ′) ∩ Ct(Φ ′) such that Ppri
Φ′(l′0) = ind’−1(i0). Since

ρ : r → r ′ in sD one has ρ : e(Ppri
Φ (l0)) → e′(Ppri

Φ′(l′0)) in D, so that there exists β ′
∈ D′ such that e′(Ppri

Φ′(l′0)) = (+,

digk
1([β

′
])) and ρ : digk

1([β]) → digk
1([β

′
]) in M. Hence (digk

1([β
′
]))∗ ≠ [] and, by Fact 69, ρ : ([β])∗ + (digk

1([β]))At →

([β ′
])∗ + (digk

1(([β
′
]))At in M: by Fact 70, we obtain ρ : β → β ′ in D and thus ρ : r[l0] → r ′

[l′0]
in sD, where r[l0] and

r ′
[l′0]

have been defined in Fact 66. By this fact and by Fact 44, we can apply the induction hypothesis and deduce that
(Φ[l0], ind[l0]) ≃ (Φ ′

[l′0]
, ind’[l′0]). Since Φ[l0] (resp. Φ

′
[l′0]

) has been obtained from Φ (resp. Φ ′) by removing the !-cell l0
(resp. l′0), the fact that (Φ[l0], ind[l0]) ≃ (Φ ′

[l′0]
, ind’[l′0]) entails that (Φ, ind) ≃ (Φ ′, ind’).

• In the case where Φ ∈ ?unit-PLPS, by Remark 67 and Fact 65, there exists l0 ∈ (C?(Φ) \ C?cb(Φ)) ∩ Ct(Φ) and
b ∈ Mfin(D′) such that e(Ppri

Φ (l0)) = (−, digk
1(b)) and (digk

1(b))
∗

≠ []. As e′ is atomic, there exists l′0 ∈ C?(Φ ′) ∩ Ct(Φ)

such that Ppri
Φ′(l′0) = ind’−1(i0). We have l0 ∉ C?cb(Φ), so that by Fact 57, k divides Card(digk

1(b)). Still by Fact 57, we
obtain that l′0 ∉ C?cb(Φ ′). From ρ : r → r ′ in sD, we can deduce (using again Remark 67) that ρ : digk

1(b) → digk
1(b

′)

in M, hence, by Fact 69, we get ρ : b∗
+ (digk

1(b))
At

→ b′∗
+ digk

1(b
′)At in M and thus ρ : r[l0] → r ′

[l′0]
in sD, where r[l0]

and r ′
[l′0]

have been defined in Fact 68. By this fact and by Fact 44, we can apply the induction hypothesis and deduce
that (Φ[l0], ind[l0]) ≃ (Φ ′

[l′0]
, ind’[l′0]). Now notice that for ϕ = (ϕC, ϕP ) : (Φ[l0], ind[l0]) ≃ (Φ ′

[l′0]
, ind’[l′0]), we also have

ϕ : (Φ, ind) ≃ (Φ ′, ind’). Indeed: let b0 =


p∈PauxΦ (l0)
[e(p)] and b′

0 =


p′∈Paux
Φ′ (l′0)

[e′(p′)] ; then for any p ∈ Paux
Φ (l0), we

have e(p) ∈ Supp(b0∗) if, and only if, e′(ϕP (p)) ∈ Supp(b′

0
∗
), hence #Φ(p) = #Φ′(ϕP (p)).

• In the case where Φ ∈ ?-box-PLPS, for every i ∈ pnq we have that r(i) = (ιi, bi) for some bi ∈ Mfin(D′) and from the
existence of ρ : r → r ′ in sD, we deduce that r ′(i) = (ιi, b′

i) where b′

i = ρ · bi. Since Φ ∉ ?unit-PLPS, by Fact 65 we
deduce b∗

i = [] for every i ∈ pnq, thus b′∗

i = [] which implies Φ ′
∉ ?unit-PLPS. By Fact 57, k divides Card(bi). Since

Card(bi) = Card(b′

i) and e′ is atomic, by applying again Fact 57, we can conclude that Φ ′
∈ ?-box-PLPS. We can thus now

apply Fact 71 twice:

1. there exists a unique atomic and injective k-experiment (e, r) of (Φ, ind) = (Φ, ind) ∈ LPSind such that
• for any p ∈ (P (Φ) \ P f(Φ)) ∩ P (Φ), we have e(p) = e(p);
• if r(i) = (+, digk

1([αi])) for some αi ∈ D′, then r(i) = αi and if r(i) = (−, digk
1(ci)) then r(i) = (−, ci).

2. there exists a unique atomic and injective k-experiment (e′, r ′) of (Φ ′, ind’) = (Φ ′, ind’) ∈ LPSind such that
• for any p ∈ (P (Φ ′) \ P f(Φ ′)) ∩ P (Φ ′), we have e′(p) = e′(p);
• if r ′(i) = (+, digk

1([α
′

i ])) for some α′

i ∈ D′, then r ′(i) = α′

i and if r ′(i) = (−, digk
1(c

′

i )) then r ′(i) = (−, c ′

i ).

If we set bi = ci (resp. bi = [αi]) if r(i) = ci (resp. r(i) = αi), and b′

i = c ′

i (resp. b
′

i = [α′

i ]) if r ′(i) = c ′

i (resp. r ′(i) = α′

i ),
then r ≃ r ′ in sD is equivalent to (digk

1(b1), . . . , dig
k
1(bn)) ≃ (digk

1(b
′

1), . . . , dig
k
1(b

′
n)) in sM. By Lemma 81 we can then

conclude that (b1, . . . , bn) ≃ (b′

1, . . . , b
′
n) in sM, which immediately yields r ≃ r ′ in sD. Since mes(Φ) < mes(Φ), by

induction hypothesis we deduce that (Φ, ind) ≃ (Φ ′, ind’). To conclude, notice that (since r ≃ r ′ in sD) for p ∈ P f(Φ),
p = Ppri

Φ (l) (resp. p′
∈ P f(Φ ′), p′

= Ppri
Φ′(l′)) such that ind(p) = ind’(p′), we have l ∈ C!(Φ) iff l′ ∈ C!(Φ ′). Thus from

(Φ, ind) ≃ (Φ ′, ind’) it follows that (Φ, ind) ≃ (Φ ′, ind’).
• the other cases are easier and left to the reader. �

Remark 82. A crucial point in the case Φ ∈?cb-PLPS of the proof is that we have ρ · β ≃ β ′, but we do not necessarily have
ρ · β = β ′ and this corresponds to the fact that, as illustrated in the introduction by an example using the PS of Fig. 2, there
are different atomic k-experiments of PS43 having the same injective result. Consider again this figure and let Φ be the LPS
of this PS. Let e = e′ be a 3-experiment of Φ such that e(pz) = (−, λz, λz) with λz ∈ A and z ∈ p2q. We have e(c1) = (−, a)

43 See footnote 26.



1234 D. de Carvalho, L. Tortora de Falco / Annals of Pure and Applied Logic 163 (2012) 1210–1236

with a = [(−, λ1, λ1)] +
3

j=1[(−, (λ2, j), (λ2, j))]. Let r = r ′ be the result of e = e′. We have Q(r, a) = {a}, hence we can
consider, for example, ρ : (−, a) → (−, a) in sD such that ρ(λ1) = (λ2, 1). We have β = (−, λ1, λ1) = β ′

≠ ρ · β .
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Technical appendix

A. Syntax

A.1. Pre-Linear Proof-Structures (PLPS)

We introduce a weaker notion than the one of PPLPS: ωPPLPS. An ωPPLPS44 is a PPLPS, except that Condition 3 of
Definition 5 is not required.

Definition 83. Let ωPPLPS be the set of triples Φ = (C, I, W) with C ∈ Cells, I a finite set satisfying I ∩ P (C) = ∅ and
W ⊆ P2(P (C) ∪ I) such that

1. for any w, w′
∈ W such that w ∩ w′

≠ ∅, we have w = w′;
2. we have P aux(C) ∪ I ⊆


W ;

3. for any w ∈ W , there exists p ∈ w such that p /∈ P pri(C).

We set C(Φ) = C, I(Φ) = I, W(Φ) = W and P (Φ) = P (C(Φ)) ∪ I. We use for ωPPLPS the notations introduced for
PPLPS (see Notations 6).

With every ωPPLPS Φ , we associate a unique PPLPS ω(Φ):

Definition 84. Let ω be the function ωPPLPS → PPLPS such that ω(Φ) = Φ ′ is defined as follows:

• C(Φ ′) = C(Φ);
• I(Φ ′) = I(Φ) \ {p ∈ I(Φ) | (∃q ∈ P pri(C(Φ))) {p, q} ∈ W(Φ)};
• W(Φ ′) = {w ∈ W(Φ) | w ⊆ P (Φ ′)}.

We give here the formal definition of the PLPS Ψ obtained from Φ by removing C0, where C0 ⊆ Ct(Φ) is such that
(C0 = {l} and l ∈ Cm(Φ) ∪ C?d(Φ)) or C0 ⊆ C!(Φ):

Definition 85. Let Φ ∈ PLPS and let C0 ⊆ Ct(Φ) such that (C0 = {l} and l ∈ Cm(Φ) ∪ C?d(Φ)) or C0 ⊆ C!(Φ). The PLPS Ψ

obtained from Φ by removing C0 is ω(Φ ′), where Φ ′ is the ωPPLPS defined as follows45:

• C(Φ ′) = C(Φ) \ C0;
• P (Φ ′) = P (Φ) \


l∈C0

{p ∈ P (Φ) | CΦ(p) = l};

• tΦ′ = tΦ C(Φ′) and CΦ′ = CΦ

C(Φ′)

P (Φ′)
;

• Ppri
Φ′ = Ppri

Φ

P (Φ′)

C(Φ′)
(resp. Pleft

Φ′ = Pleft
Φ

P (Φ′)

C(Φ′)
);

• #Φ′ = #Φ ;
• I(Φ ′) = I(Φ) ∪


l∈C0

Paux
Φ (l);

• W(Φ ′) = {w ∈ W(Φ) | w ⊆ (P (Φ ′) ∪ I(Φ ′))}.

A.2. Proof-Structures (PS)

In the same way that we introduced indexed PPLPS, indexed PLPS, indexed LPS and indexed PS, we introduce the notion
of indexed ωPPLPS. Now, to every (Φ, ind) ∈ ωPPLPSin, we associate the indexed PPLPS ω(Φ) = (ω(Φ), ind1) defined as
follows: for p ∈ P f(ω(Φ)) we set ind1(p) = ind(cΦ(p)).

44 ω is reminiscent of the definition of ω-reduction in [23].
45 Concretely, Φ ′ is obtained from Φ by erasing the cells of C0 and their principal ports, and by ‘‘changing the status’’ of the auxiliary ports of the cells of
C0 , which become elements of I(Φ ′).
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B. Experiments

Definition 86. We call depth of an element α ∈ D the least number n ∈ N such that α ∈ Dn.46
Let +

⊥
= − and −

⊥
= +. We define α⊥ for any α ∈ D, by induction on the depth of α:

• for γ ∈ A, γ ⊥
= γ ; and (ι, ∗)⊥ = (ι⊥, ∗);

• else, (ι, α, β)⊥ = (ι⊥, α⊥, β⊥) and (ι, [α1, . . . , αn])
⊥

= (ι⊥, [α⊥

1 , . . . , α⊥
n ]).

Definition 87. For any α ∈ D, we define, by induction on the depth of α, Sub(α) ∈ Mfin(D) as follows:
• Sub(δ) = [δ] if δ ∈ A ∪ ({+, −} × {∗});
• Sub(ι, α, β) = [(ι, α, β)] + Sub(α) + Sub(β);
• Sub(ι, [α1, . . . , αm]) = [(ι, [α1, . . . , αm])] +

m
j=1 Sub(αj).

For any (α1, . . . , αn) ∈ D<ω , we set Sub(α1, . . . , αn) =
n

i=1 Sub(αi).
For any β ∈ D, for any r ∈ D<ω , we say that β occurs in r if β ∈ Supp(Sub(r)).
For any γ ∈ A, for any r ∈ D<ω , for anym ∈ N, we say that there are exactly m occurrences of γ in r if Sub(r)(γ ) = m.

The following precise definition of substitution clearly entails that for every α ∈ D and for every substitution σ : D → D,
one has σ(α⊥) = σ(α)⊥:

Definition 88. A substitution is a function σ : D → D induced by a function σ A
: A → D and defined by induction on the

depth of elements of D, as follows (as usual ι ∈ {+, −} and γ ∈ A):
• σ(γ ) = σ A(γ ) and σ(ι, ∗) = (ι, ∗);
• σ(ι, α, β) := (ι, σ (α), σ (β))
• σ(ι, [α1, . . . , αn]) = (ι, [σ(α1), . . . , σ (αn)]).

C. Main result

We give the formal definition of Φ for Φ ∈ ?-box-PLPS ∩ LPS:
Definition 89. With Φ ∈ ?-box-PLPS ∩ LPS one can associate the PLPS Φ−1 obtained from Φ by modifying the function #
(all the rest is unchanged):C?(Φ−1)∩Ct(Φ−1) = C?cauxd(Φ)∩Ct(Φ) and for every cell l ∈ C?cauxd(Φ)∩Ct(Φ), the auxiliary
ports of l in Φ are exactly those of l in Φ−1; we can thus set #Φ−1(p) = #Φ(p) − 1 for such an auxiliary port p.47 For every
l ∈ C?(Φ−1) \ (C?(Φ−1) ∩ Ct(Φ−1)) and for every auxiliary port p of l, we set #Φ−1(p) = #Φ(p).

The PLPS Φ is then obtained from Φ−1 by removing C!(Φ−1) ∩ Ct(Φ−1).48

D. Proof of Proposition 40

D.1. The case of ax-PLPS

We give here the formal definition of (Φ1, ind1) and (Φ ′

1, ind’1) of the proof of Proposition 40 (case Φ ∈ ax-PLPS).
We setm0 = min{i0, j0} and M0 = max{i0, j0}. We define (Φ1, ind1) ∈ PLPSind and (Φ ′

1, ind’1) ∈ PLPSind as follows:
• C(Φ1) = C(Φ) and C(Φ ′

1) = C(Φ ′);
• I(Φ1) = I(Φ) \ {p0, q0} and I(Φ ′

1) = I(Φ ′) \ {p′

0, q
′

0};
• W(Φ1) = W(Φ) \ {{p0, q0}} and W(Φ ′

1) = W(Φ ′) \ {{p′

0, q
′

0}};
• we define the value of ind1(p) as follows:

ind(p) if ind(p) < m0;
ind(p) − 1 ifm0 < ind(p) < M0;
ind(p) − 2 ifM0 < ind(p);

and the value of ind’1(p) as follows:
ind’(p) if ind’(p) < m0;
ind’(p) − 1 ifm0 < ind’(p) < M0;
ind’(p) − 2 ifM0 < ind’(p).

D.2. The case of ?cb-PLPS

We give here the definition of (Φ1, ind1), (Φ
′

1, ind’1) ∈ PLPSind of the proof of Proposition 40 (case: Φ ∈?cb-PLPS):
(Φ1, ind1) = ω(Ψ1, ind2) and (Φ ′

1, ind’1) = ω(Ψ ′

1, ind’2), where (Ψ1, ind2), (Ψ
′

1, ind’2) ∈ ωPPLPSin are defined as follows:

46 The definition of Dn has been given in Definition 21.
47 We use here the crucial hypothesis that l ∈ C?cauxd (Φ) which means that #Φ (p) > 0.
48 Following Definition 85.
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• C(Ψ1) = C(Φ) and C(Ψ ′

1) = C(Φ ′);
• tΨ1 = tΦ and tΨ ′

1
= tΦ′ ;

• P (Ψ1) = P (Φ) \ {p} and P (Ψ ′

1) = P (Φ ′) \ {p′
};

• CΨ1 = CΦ P (Ψ1) and CΨ ′
1

= CΦ′ P (Ψ ′
1)
;

• Ppri
Ψ1

= Ppri
Φ and Ppri

Ψ ′
1

= Ppri
Φ′ ; Pleft

Ψ1
= Pleft

Φ and Pleft
Ψ ′
1

= Pleft
Φ′ ;

• #Ψ1 = #Φ dom(#Φ )\{p} and #Ψ ′
1

= #Φ′ dom(#Φ′ )\{p′};
• I(Ψ1) = I(Φ) ∪ {p} and I(Ψ ′

1) = I(Φ ′) ∪ {p′
};

• W(Ψ1) = W(Φ) and W(Ψ ′

1) = W(Φ ′);

• ind2(q) =


ind(q) if q ≠ p;
Card(P f(Φ)) + 1 if q = p;

and ind’2(q) =


ind’(q) if q ≠ p′;
Card(P f(Φ ′)) + 1 if q = p′.
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