18,658 research outputs found

    Stability Conditions, Wall-crossing and weighted Gromov-Witten Invariants

    Full text link
    We extend B. Hassett's theory of weighted stable pointed curves ([Has03]) to weighted stable maps. The space of stability conditions is described explicitly, and the wall-crossing phenomenon studied. This can be considered as a non-linear analog of the theory of stability conditions in abelian and triangulated categories. We introduce virtual fundamental classes and thus obtain weighted Gromov-Witten invariants. We show that by including gravitational descendants, one obtains an \LL-algebra as introduced in [LM04] as a generalization of a cohomological field theory.Comment: 28 pages; v2: references added and updated, addressed referee comments; to appear in Moscow Math Journa

    A 1.751.75 LP approximation for the Tree Augmentation Problem

    Full text link
    In the Tree Augmentation Problem (TAP) the goal is to augment a tree TT by a minimum size edge set FF from a given edge set EE such that T∪FT \cup F is 22-edge-connected. The best approximation ratio known for TAP is 1.51.5. In the more general Weighted TAP problem, FF should be of minimum weight. Weighted TAP admits several 22-approximation algorithms w.r.t. to the standard cut LP-relaxation, but for all of them the performance ratio of 22 is tight even for TAP. The problem is equivalent to the problem of covering a laminar set family. Laminar set families play an important role in the design of approximation algorithms for connectivity network design problems. In fact, Weighted TAP is the simplest connectivity network design problem for which a ratio better than 22 is not known. Improving this "natural" ratio is a major open problem, which may have implications on many other network design problems. It seems that achieving this goal requires finding an LP-relaxation with integrality gap better than 22, which is a long time open problem even for TAP. In this paper we introduce such an LP-relaxation and give an algorithm that computes a feasible solution for TAP of size at most 1.751.75 times the optimal LP value. This gives some hope to break the ratio 22 for the weighted case. Our algorithm computes some initial edge set by solving a partial system of constraints that form the integral edge-cover polytope, and then applies local search on 33-leaf subtrees to exchange some of the edges and to add additional edges. Thus we do not need to solve the LP, and the algorithm runs roughly in time required to find a minimum weight edge-cover in a general graph.Comment: arXiv admin note: substantial text overlap with arXiv:1507.0279

    Generating families of surface triangulations. The case of punctured surfaces with inner degree at least 4

    Get PDF
    We present two versions of a method for generating all triangulations of any punctured surface in each of these two families: (1) triangulations with inner vertices of degree at least 4 and boundary vertices of degree at least 3 and (2) triangulations with all vertices of degree at least 4. The method is based on a series of reversible operations, termed reductions, which lead to a minimal set of triangulations in each family. Throughout the process the triangulations remain within the corresponding family. Moreover, for the family (1) these operations reduce to the well-known edge contractions and removals of octahedra. The main results are proved by an exhaustive analysis of all possible local configurations which admit a reduction.Comment: This work has been partially supported by PAI FQM-164; PAI FQM-189; MTM 2010-2044

    Framings for graph hypersurfaces

    Full text link
    We present a method for computing the framing on the cohomology of graph hypersurfaces defined by the Feynman differential form. This answers a question of Bloch, Esnault and Kreimer in the affirmative for an infinite class of graphs for which the framings are Tate motives. Applying this method to the modular graphs of Brown and Schnetz, we find that the Feynman differential form is not of Tate type in general. This finally disproves a folklore conjecture stating that the periods of Feynman integrals of primitive graphs in phi^4 theory factorise through a category of mixed Tate motives

    Chromatic roots and minor-closed families of graphs

    Get PDF
    Given a minor-closed class of graphs G\mathcal{G}, what is the infimum of the non-trivial roots of the chromatic polynomial of G∈GG \in \mathcal{G}? When G\mathcal{G} is the class of all graphs, the answer is known to be 32/2732/27. We answer this question exactly for three minor-closed classes of graphs. Furthermore, we conjecture precisely when the value is larger than 32/2732/27.Comment: 18 pages, 5 figure
    • …
    corecore