68 research outputs found

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200

    Planar Open Rectangle-of-Influence Drawings

    Get PDF
    A straight line drawing of a graph is an open weak rectangle-of-influence (RI) drawing, if there is no vertex in the relative interior of the axis parallel rectangle induced by the end points of each edge. Despite recent interest of the graph drawing community in rectangle-of-influence drawings, no algorithm is known to test whether a graph has a planar open weak RI-drawing, not even for inner triangulated graphs. In this thesis, we have two major contributions. First we study open weak RI-drawings of plane graphs that must have a non-aligned frame, i.e., the graph obtained from removing the interior of every filled triangle is drawn such that no two vertices have the same coordinate. We introduce a new way to assign labels to angles, i.e., instances of vertices on faces. Using this labeling, we provide necessary and sufficient conditions characterizing those plane graphs that have open weak RI-drawings with non-aligned frame. We also give a polynomial algorithm to construct such a drawing if one exists. Our second major result is a negative result: deciding if a planar graph (i.e., one where we can choose the planar embedding) has an open weak RI-drawing is NP-complete. NP-completeness holds even for open weak RI-drawings with non-aligned frames

    Witness Gabriel Graphs

    Get PDF
    We consider a generalization of the Gabriel graph, the witness Gabriel graph. Given a set of vertices P and a set of witnesses W in the plane, there is an edge ab between two points of P in the witness Gabriel graph GG-(P,W) if and only if the closed disk with diameter ab does not contain any witness point (besides possibly a and/or b). We study several properties of the witness Gabriel graph, both as a proximity graph and as a new tool in graph drawing.Comment: 23 pages. EuroCG 200

    4-labelings and grid embeddings of plane quadrangulations

    Get PDF
    AbstractA straight-line drawing of a planar graph G is a closed rectangle-of-influence drawing if for each edge uv, the closed axis-parallel rectangle with opposite corners u and v contains no other vertices. We show that each quadrangulation on n vertices has a closed rectangle-of-influence drawing on the (n−3)×(n−3) grid.The algorithm is based on angle labeling and simple face counting in regions. This answers the question of what would be a grid embedding of quadrangulations analogous to Schnyder’s classical algorithm for embedding triangulations and extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden.A further compaction step yields a straight-line drawing of a quadrangulation on the (⌈n2⌉−1)×(⌈3n4⌉−1) grid. The advantage over other existing algorithms is that it is not necessary to add edges to the quadrangulation to make it 4-connected

    Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt

    Get PDF
    In this work, novel rectangle and circular orifice (zero-length) dies have been utilized for temperature-strain rate dependent planar and uniaxial extensional viscosity measurements for the LDPE polymer melt by using standard twin bore capillary rheometer and Cogswell model and the capability of five different constitutive equations (novel generalized Newtonian model, original Yao model, extended Yao model, modified White-Metzner model, modified Leonov model) to describe the measured experimental data has been tested. It has been shown that chain branching causes the strain hardening occurrence in both uniaxial and planar extensional viscosities and its maximum is shifted to the higher strain rates if the temperature is increased. The level of uniaxial extensional strain hardening for the branched LDPE sample has been found to be higher in comparison with the planar extensional viscosity within wide range of temperatures. (C) 2016 Elsevier Ltd. All rights reserved.Grant Agency of the Czech Republic [16-05886S

    Drawing Planar Graphs with Few Geometric Primitives

    Get PDF
    We define the \emph{visual complexity} of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw a path with an arbitrary number of edges). Let nn denote the number of vertices of a graph. We show that trees can be drawn with 3n/43n/4 straight-line segments on a polynomial grid, and with n/2n/2 straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with (8n17)/3(8n-17)/3 segments on an O(n)×O(n2)O(n)\times O(n^2) grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with 3n/23n/2 edges on an O(n)×O(n2)O(n)\times O(n^2) grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only (5n11)/3(5n - 11)/3 arcs. This is significantly smaller than the lower bound of 2n2n for line segments for a nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017
    corecore