9,597 research outputs found

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k3k \geq 3, deciding whether src(G)k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    On Rainbow Connection Number and Connectivity

    Full text link
    Rainbow connection number, rc(G)rc(G), of a connected graph GG is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we investigate the relationship of rainbow connection number with vertex and edge connectivity. It is already known that for a connected graph with minimum degree δ\delta, the rainbow connection number is upper bounded by 3n/(δ+1)+33n/(\delta + 1) + 3 [Chandran et al., 2010]. This directly gives an upper bound of 3n/(λ+1)+33n/(\lambda + 1) + 3 and 3n/(κ+1)+33n/(\kappa + 1) + 3 for rainbow connection number where λ\lambda and κ\kappa, respectively, denote the edge and vertex connectivity of the graph. We show that the above bound in terms of edge connectivity is tight up-to additive constants and show that the bound in terms of vertex connectivity can be improved to (2+ϵ)n/κ+23/ϵ2(2 + \epsilon)n/\kappa + 23/ \epsilon^2, for any ϵ>0\epsilon > 0. We conjecture that rainbow connection number is upper bounded by n/κ+O(1)n/\kappa + O(1) and show that it is true for κ=2\kappa = 2. We also show that the conjecture is true for chordal graphs and graphs of girth at least 7.Comment: 10 page

    Rainbow Connection Number and Connected Dominating Sets

    Full text link
    Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by {\gamma}_c(G) + 2, where {\gamma}_c(G) is the connected domination number of G. Bounds of the form diameter(G) \leq rc(G) \leq diameter(G) + c, 1 \leq c \leq 4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, AT-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G) \leq 3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds. An extension of this idea to two-step dominating sets is used to show that for every connected graph on n vertices with minimum degree {\delta}, the rainbow connection number is upper bounded by 3n/({\delta} + 1) + 3. This solves an open problem of Schiermeyer (2009), improving the previously best known bound of 20n/{\delta} by Krivelevich and Yuster (2010). Moreover, this bound is seen to be tight up to additive factors by a construction of Caro et al. (2008).Comment: 14 page

    The strong rainbow vertex-connection of graphs

    Full text link
    A vertex-colored graph GG is said to be rainbow vertex-connected if every two vertices of GG are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph GG, denoted by rvc(G)rvc(G), is the smallest number of colors that are needed in order to make GG rainbow vertex-connected. If for every pair u,vu, v of distinct vertices, GG contains a rainbow uvu-v geodesic, then GG is strong rainbow vertex-connected. The minimum number kk for which there exists a kk-vertex-coloring of GG that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of GG, denoted by srvc(G)srvc(G). Observe that rvc(G)srvc(G)rvc(G)\leq srvc(G) for any nontrivial connected graph GG. In this paper, sharp upper and lower bounds of srvc(G)srvc(G) are given for a connected graph GG of order nn, that is, 0srvc(G)n20\leq srvc(G)\leq n-2. Graphs of order nn such that srvc(G)=1,2,n2srvc(G)= 1, 2, n-2 are characterized, respectively. It is also shown that, for each pair a,ba, b of integers with a5a\geq 5 and b(7a8)/5b\geq (7a-8)/5, there exists a connected graph GG such that rvc(G)=arvc(G)=a and srvc(G)=bsrvc(G)=b.Comment: 10 page

    On strong rainbow connection number

    Full text link
    A path in an edge-colored graph, where adjacent edges may be colored the same, is a rainbow path if no two edges of it are colored the same. For any two vertices uu and vv of GG, a rainbow uvu-v geodesic in GG is a rainbow uvu-v path of length d(u,v)d(u,v), where d(u,v)d(u,v) is the distance between uu and vv. The graph GG is strongly rainbow connected if there exists a rainbow uvu-v geodesic for any two vertices uu and vv in GG. The strong rainbow connection number of GG, denoted src(G)src(G), is the minimum number of colors that are needed in order to make GG strong rainbow connected. In this paper, we first investigate the graphs with large strong rainbow connection numbers. Chartrand et al. obtained that GG is a tree if and only if src(G)=msrc(G)=m, we will show that src(G)m1src(G)\neq m-1, so GG is not a tree if and only if src(G)m2src(G)\leq m-2, where mm is the number of edge of GG. Furthermore, we characterize the graphs GG with src(G)=m2src(G)=m-2. We next give a sharp upper bound for src(G)src(G) according to the number of edge-disjoint triangles in graph GG, and give a necessary and sufficient condition for the equality.Comment: 16 page
    corecore