research

The strong rainbow vertex-connection of graphs

Abstract

A vertex-colored graph GG is said to be rainbow vertex-connected if every two vertices of GG are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph GG, denoted by rvc(G)rvc(G), is the smallest number of colors that are needed in order to make GG rainbow vertex-connected. If for every pair u,vu, v of distinct vertices, GG contains a rainbow uvu-v geodesic, then GG is strong rainbow vertex-connected. The minimum number kk for which there exists a kk-vertex-coloring of GG that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of GG, denoted by srvc(G)srvc(G). Observe that rvc(G)srvc(G)rvc(G)\leq srvc(G) for any nontrivial connected graph GG. In this paper, sharp upper and lower bounds of srvc(G)srvc(G) are given for a connected graph GG of order nn, that is, 0srvc(G)n20\leq srvc(G)\leq n-2. Graphs of order nn such that srvc(G)=1,2,n2srvc(G)= 1, 2, n-2 are characterized, respectively. It is also shown that, for each pair a,ba, b of integers with a5a\geq 5 and b(7a8)/5b\geq (7a-8)/5, there exists a connected graph GG such that rvc(G)=arvc(G)=a and srvc(G)=bsrvc(G)=b.Comment: 10 page

    Similar works

    Full text

    thumbnail-image

    Available Versions