22 research outputs found

    A fast CORDIC co-processor architecture for digital signal processing applications

    Get PDF
    The coordinate rotational digital computer (CORDIC) is an arithmetic algorithm, which has been used for arithmetic units in the fast computing of elementary functions and for special purpose hardware in programmable logic devices. This paper describes a classification method that can be used for the possible applications of the algorithm and the architecture that is required for fast hardware computing of the algorithm.Área: Redes - Sistemas Operativos - Sistemas de Tiempo Real - Arquitectura de Procesadore

    A fast CORDIC co-processor architecture for digital signal processing applications

    Get PDF
    The coordinate rotational digital computer (CORDIC) is an arithmetic algorithm, which has been used for arithmetic units in the fast computing of elementary functions and for special purpose hardware in programmable logic devices. This paper describes a classification method that can be used for the possible applications of the algorithm and the architecture that is required for fast hardware computing of the algorithm.Área: Redes - Sistemas Operativos - Sistemas de Tiempo Real - Arquitectura de ProcesadoresRed de Universidades con Carreras en Informåtica (RedUNCI

    New virtually scaling free adaptive CORDIC rotator

    No full text
    In this article we propose a novel CORDIC rotator algorithm that eliminates the problems of scale factor compensation and limited range of convergence associated with the classical CORDIC algorithm. In our scheme, depending on the target angle or the initial coordinate of the vector, a scaling by 1 or 1/?2 is needed that can be realised with minimal hardware. The proposed CORDIC rotator adaptively selects appropriate iteration steps and converges to the final result by executing 50% less number of iterations on an average compared to that required for the classical CORDIC. Unlike classical CORDIC, the final value of the scale factor is completely independent of number of executed iterations. Based on the proposed algorithm, a 16-bit pipelined CORDIC rotator implementation has been described. The silicon area of the fabricated pipelined CORDIC rotator core is 2.73 mm2. This is equivalent to 38 k inverter gates in IHP in-house 0.25 ?m BiCMOS technology. The average dynamic power consumption of the fabricated CORDIC rotator is 17 mW @ 2.5 V supply and 20Msps throughput. Currently, this CORDIC rotator is used as a part of the baseband processor for a project that aims to design a single-chip wireless modem compliant with IEEE 802.11a and Hiperlan/2

    Error Analysis of CORDIC Processor with FPGA Implementation

    Full text link
    The coordinate rotation digital computer (CORDIC) is a shift-add based fast computing algorithm which has been found in many digital signal processing (DSP) applications. In this paper, a detailed error analysis based on mean square error criteria and its implementation on FPGA is presented. Two considered error sources are an angle approximation error and a quantization error due to finite word length in fixed-point number system. The error bound and variance are discussed in theory. The CORDIC algorithm is implemented on FPGA using the Xilinx Zynq-7000 development board called ZedBoard. Those results of theoretical error analysis are practically investigated by implementing it on actual FPGA board. In addition, Matlab is used to provide theoretical value as a baseline model by being set up in double-precision floating-point to compare it with the practical value of errors on FPGA implementation.Comment: 5 pages, 7 Figure

    A fast CORDIC co-processor architecture for digital signal processing applications

    Get PDF
    The coordinate rotational digital computer (CORDIC) is an arithmetic algorithm, which has been used for arithmetic units in the fast computing of elementary functions and for special purpose hardware in programmable logic devices. This paper describes a classification method that can be used for the possible applications of the algorithm and the architecture that is required for fast hardware computing of the algorithm.Área: Redes - Sistemas Operativos - Sistemas de Tiempo Real - Arquitectura de ProcesadoresRed de Universidades con Carreras en Informåtica (RedUNCI

    Real-Time and High-Accuracy Arctangent Computation Using CORDIC and Fast Magnitude Estimation

    Get PDF
    This paper presents an improved VLSI (Very Large Scale of Integration) architecture for real-time and high-accuracy computation of trigonometric functions with fixed-point arithmetic, particularly arctangent using CORDIC (Coordinate Rotation Digital Computer) and fast magnitude estimation. The standard CORDIC implementation suffers of a loss of accuracy when the magnitude of the input vector becomes small. Using a fast magnitude estimator before running the standard algorithm, a pre-processing magnification is implemented, shifting the input coordinates by a proper factor. The entire architecture does not use a multiplier, it uses only shift and add primitives as the original CORDIC, and it does not change the data path precision of the CORDIC core. A bit-true case study is presented showing a reduction of the maximum phase error from 414 LSB (angle error of 0.6355 rad) to 4 LSB (angle error of 0.0061 rad), with small overheads of complexity and speed. Implementation of the new architecture in 0.18 ”m CMOS technology allows for real-time and low-power processing of CORDIC and arctangent, which are key functions in many embedded DSP systems. The proposed macrocell has been verified by integration in a system-on-chip, called SENSASIP (Sensor Application Specific Instruction-set Processor), for position sensor signal processing in automotive measurement application

    Design and Implementation of an RF Front-End for Software Defined Radios

    Get PDF
    Software Defined Radios have brought a major reformation in the design standards for radios, in which a large portion of the functionality is implemented through pro­ grammable signal processing devices, giving the radio the ability to change its op­ erating parameters to accommodate new features and capabilities. A software radio approach reduces the content of radio frequency and other analog components of the traditional radios and emphasizes digital signal processing to enhance overall receiver flexibility. Field Programmable Gate Arrays (FPGA) are a suitable technology for the hardware platform as they offer the potential of hardware-like performance coupled with software-like programmability. Software defined radio is a very broad field, encompassing the design of various technologies all the way from the antenna to RF, IF, and baseband digital design. The RF section primarily consists of analog hardware modules. The IF and baseband sections are primarily digital. It is the general process of the radio to convert the incoming signal from RF to IF and then IF to baseband for better signal processing system. In this thesis, some of major building blocks of a Software defined radio are de­ signed and implemented using FPGAs. The design of a Digital front end, which provides the bridge between the baseband and analog RF portions of a wireless receiver, is synthesized. The Digital front end receiver consists of a digital down converter(DDC) which in turn comprises of a direct digital frequency synthesizer (DDFS), a phase accumulator and a low pass filter. The signal processing block of the DDFS is executed using Co-ordinate Rotation Digital Computer (CORDIC) iii Abstract algorithm. Cascaded-Integrator-Comb filters (CIC) are implemented for changing the sample rate of the incoming data. Application of a DDC includes software ra­ dios, multicarrier, multimode digital receivers, micro and pico cell systems,broadband data applications, instrumentation and test equipment and in-building wireless tele­ phony. Also, in this thesis, interfaces for connecting Texas Instruments high speed and high resolution Analog-to-Digital converters (ADC) and Digital-to-Analog converters (DAC) with Xilinx Virtex-5 FPGAs are also implemented and demonstrated

    A Digital Integrated Inertial Navigation System For Aerial Vehicles

    Get PDF

    ImplementaciĂłn de arquitecturas para el cĂĄlculo de funciones trascendentales empleando el algoritmo CORDIC en FPGA

    Get PDF
    Al implementar un algoritmo de procesamiento digital de señales en hardware es muy comĂșn encontrarse con funciones matemĂĄticas trascendentales las cuales, en principio, se pueden implementar usando la serie de Taylor o diseñando un hardware especĂ­fico para cada funciĂłn. A fin de mejorar su rendimiento se desarrollĂł el algoritmo Coordenado Circular, HiperbĂłlico y Lineal (CORDIC), el cual reduce tanto el uso de compuertas lĂłgicas como el nĂșmero de iteraciones empleadas al implementar una funciĂłn trascendental.Tesi
    corecore