9 research outputs found

    Asymptotic normality of the size of the giant component in a random hypergraph

    Full text link
    Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-L\"of, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph G(n,p)G(n,p) above the phase transition. Here we show that the same method applies to the analogous model of random kk-uniform hypergraphs, establishing asymptotic normality throughout the (sparse) supercritical regime. Previously, asymptotic normality was known only towards the two ends of this regime.Comment: 11 page

    Branching Processes, and Random-Cluster Measures on Trees

    Full text link
    Random-cluster measures on infinite regular trees are studied in conjunction with a general type of `boundary condition', namely an equivalence relation on the set of infinite paths of the tree. The uniqueness and non-uniqueness of random-cluster measures are explored for certain classes of equivalence relations. In proving uniqueness, the following problem concerning branching processes is encountered and answered. Consider bond percolation on the family-tree TT of a branching process. What is the probability that every infinite path of TT, beginning at its root, contains some vertex which is itself the root of an infinite open sub-tree

    Limit Theorems and Coexistence Probabilities for the Curie-Weiss Potts Model with an external field

    Full text link
    The Curie-Weiss Potts model is a mean field version of the well-known Potts model. In this model, the critical line β=βc(h)\beta = \beta_c (h) is explicitly known and corresponds to a first order transition when q>2q > 2. In the present paper we describe the fluctuations of the density vector in the whole domain β0\beta \geqslant 0 and h0h \geqslant 0, including the conditional fluctuations on the critical line and the non-Gaussian fluctuations at the extremity of the critical line. The probabilities of each of the two thermodynamically stable states on the critical line are also computed. Similar results are inferred for the Random-Cluster model on the complete graph.Comment: 17 page

    Approximating the partition function of the ferromagnetic Potts model

    Full text link
    We provide evidence that it is computationally difficult to approximate the partition function of the ferromagnetic q-state Potts model when q>2. Specifically we show that the partition function is hard for the complexity class #RHPi_1 under approximation-preserving reducibility. Thus, it is as hard to approximate the partition function as it is to find approximate solutions to a wide range of counting problems, including that of determining the number of independent sets in a bipartite graph. Our proof exploits the first order phase transition of the "random cluster" model, which is a probability distribution on graphs that is closely related to the q-state Potts model.Comment: Minor correction

    Counting connected hypergraphs via the probabilistic method

    Full text link
    In 1990 Bender, Canfield and McKay gave an asymptotic formula for the number of connected graphs on [n][n] with mm edges, whenever nn and the nullity mn+1m-n+1 tend to infinity. Asymptotic formulae for the number of connected rr-uniform hypergraphs on [n][n] with mm edges and so nullity t=(r1)mn+1t=(r-1)m-n+1 were proved by Karo\'nski and \L uczak for the case t=o(logn/loglogn)t=o(\log n/\log\log n), and Behrisch, Coja-Oghlan and Kang for t=Θ(n)t=\Theta(n). Here we prove such a formula for any r3r\ge 3 fixed, and any t=t(n)t=t(n) satisfying t=o(n)t=o(n) and tt\to\infty as nn\to\infty. This leaves open only the (much simpler) case t/nt/n\to\infty, which we will consider in future work. ( arXiv:1511.04739 ) Our approach is probabilistic. Let Hn,prH^r_{n,p} denote the random rr-uniform hypergraph on [n][n] in which each edge is present independently with probability pp. Let L1L_1 and M1M_1 be the numbers of vertices and edges in the largest component of Hn,prH^r_{n,p}. We prove a local limit theorem giving an asymptotic formula for the probability that L1L_1 and M1M_1 take any given pair of values within the `typical' range, for any p=p(n)p=p(n) in the supercritical regime, i.e., when p=p(n)=(1+ϵ(n))(r2)!nr+1p=p(n)=(1+\epsilon(n))(r-2)!n^{-r+1} where ϵ3n\epsilon^3n\to\infty and ϵ0\epsilon\to 0; our enumerative result then follows easily. Taking as a starting point the recent joint central limit theorem for L1L_1 and M1M_1, we use smoothing techniques to show that `nearby' pairs of values arise with about the same probability, leading to the local limit theorem. Behrisch et al used similar ideas in a very different way, that does not seem to work in our setting. Independently, Sato and Wormald have recently proved the special case r=3r=3, with an additional restriction on tt. They use complementary, more enumerative methods, which seem to have a more limited scope, but to give additional information when they do work.Comment: Expanded; asymptotics clarified - no significant mathematical changes. 67 pages (including appendix
    corecore