1,889 research outputs found

    Coloring, location and domination of corona graphs

    Get PDF
    A vertex coloring of a graph GG is an assignment of colors to the vertices of GG such that every two adjacent vertices of GG have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set SS of vertices of a graph GG is a dominating set in GG if every vertex outside of SS is adjacent to at least one vertex belonging to SS. A domination parameter of GG is related to those structures of a graph satisfying some domination property together with other conditions on the vertices of GG. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-kk colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, throughout some relationships between the distance-kk chromatic number of corona graphs and the distance-kk chromatic number of its factors. Moreover, we give the exact value of the distance-kk chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating-domination number of corona graphs. We give closed formulaes for the kk-domination number, the distance-kk domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.Comment: 18 page

    On the metric dimension of corona product graphs

    Get PDF
    Given a set of vertices S={v1,v2,...,vk}S=\{v_1,v_2,...,v_k\} of a connected graph GG, the metric representation of a vertex vv of GG with respect to SS is the vector r(v∣S)=(d(v,v1),d(v,v2),...,d(v,vk))r(v|S)=(d(v,v_1),d(v,v_2),...,d(v,v_k)), where d(v,vi)d(v,v_i), i∈{1,...,k}i\in \{1,...,k\} denotes the distance between vv and viv_i. SS is a resolving set for GG if for every pair of vertices u,vu,v of GG, r(u∣S)≠r(v∣S)r(u|S)\ne r(v|S). The metric dimension of GG, dim(G)dim(G), is the minimum cardinality of any resolving set for GG. Let GG and HH be two graphs of order n1n_1 and n2n_2, respectively. The corona product G⊙HG\odot H is defined as the graph obtained from GG and HH by taking one copy of GG and n1n_1 copies of HH and joining by an edge each vertex from the ithi^{th}-copy of HH with the ithi^{th}-vertex of GG. For any integer k≥2k\ge 2, we define the graph G⊙kHG\odot^k H recursively from G⊙HG\odot H as G⊙kH=(G⊙k−1H)⊙HG\odot^k H=(G\odot^{k-1} H)\odot H. We give several results on the metric dimension of G⊙kHG\odot^k H. For instance, we show that given two connected graphs GG and HH of order n1≥2n_1\ge 2 and n2≥2n_2\ge 2, respectively, if the diameter of HH is at most two, then dim(G⊙kH)=n1(n2+1)k−1dim(H)dim(G\odot^k H)=n_1(n_2+1)^{k-1}dim(H). Moreover, if n2≥7n_2\ge 7 and the diameter of HH is greater than five or HH is a cycle graph, then $dim(G\odot^k H)=n_1(n_2+1)^{k-1}dim(K_1\odot H).
    • …
    corecore