1,668 research outputs found

    Packing Chromatic Number of Distance Graphs

    Get PDF
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that vertices of GG can be partitioned into disjoint classes X1,...,XkX_1, ..., X_k where vertices in XiX_i have pairwise distance greater than ii. We study the packing chromatic number of infinite distance graphs G(Z,D)G(Z, D), i.e. graphs with the set ZZ of integers as vertex set and in which two distinct vertices i,jZi, j \in Z are adjacent if and only if ijD|i - j| \in D. In this paper we focus on distance graphs with D={1,t}D = \{1, t\}. We improve some results of Togni who initiated the study. It is shown that χρ(G(Z,D))35\chi_{\rho}(G(Z, D)) \leq 35 for sufficiently large odd tt and χρ(G(Z,D))56\chi_{\rho}(G(Z, D)) \leq 56 for sufficiently large even tt. We also give a lower bound 12 for t9t \geq 9 and tighten several gaps for χρ(G(Z,D))\chi_{\rho}(G(Z, D)) with small tt.Comment: 13 pages, 3 figure

    Subdivision into i-packings and S-packing chromatic number of some lattices

    Get PDF
    An ii-packing in a graph GG is a set of vertices at pairwise distance greater than ii. For a nondecreasing sequence of integers S=(s_1,s_2,)S=(s\_{1},s\_{2},\ldots), the SS-packing chromatic number of a graph GG is the least integer kk such that there exists a coloring of GG into kk colors where each set of vertices colored ii, i=1,,ki=1,\ldots, k, is an s_is\_i-packing. This paper describes various subdivisions of an ii-packing into jj-packings (j\textgreater{}i) for the hexagonal, square and triangular lattices. These results allow us to bound the SS-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S=(s_i,iN)S=(s\_{i}, i\in\mathbb{N}^{*}), s_i=d+(i1)/ns\_{i}=d+ \lfloor (i-1)/n \rfloor

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even

    S-Packing Colorings of Cubic Graphs

    Full text link
    Given a non-decreasing sequence S=(s_1,s_2,,s_k)S=(s\_1,s\_2, \ldots, s\_k) of positive integers, an {\em SS-packing coloring} of a graph GG is a mapping cc from V(G)V(G) to {s_1,s_2,,s_k}\{s\_1,s\_2, \ldots, s\_k\} such that any two vertices with color s_is\_i are at mutual distance greater than s_is\_i, 1ik1\le i\le k. This paper studies SS-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are (1,2,2,2,2,2,2)(1,2,2,2,2,2,2)-packing colorable and (1,1,2,2,3)(1,1,2,2,3)-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order 3838 which is not (1,2,,12)(1,2,\ldots,12)-packing colorable

    Topological order from quantum loops and nets

    Full text link
    I define models of quantum loops and nets which have ground states with topological order. These make possible excited states comprised of deconfined anyons with non-abelian braiding. With the appropriate inner product, these quantum loop models are equivalent to net models whose topological weight involves the chromatic polynomial. A useful consequence is that the models have a quantum self-duality, making it possible to find a simple Hamiltonian preserving the topological order. For the square lattice, this Hamiltonian has only four-spin interactions
    corecore