12,708 research outputs found

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs

    Full text link
    We show how to compute the probabilities of various connection topologies for uniformly random spanning trees on graphs embedded in surfaces. As an application, we show how to compute the "intensity" of the loop-erased random walk in Z2{\mathbb Z}^2, that is, the probability that the walk from (0,0) to infinity passes through a given vertex or edge. For example, the probability that it passes through (1,0) is 5/16; this confirms a conjecture from 1994 about the stationary sandpile density on Z2{\mathbb Z}^2. We do the analogous computation for the triangular lattice, honeycomb lattice and Z×R{\mathbb Z} \times {\mathbb R}, for which the probabilities are 5/18, 13/36, and 1/4−1/π21/4-1/\pi^2 respectively.Comment: 45 pages, many figures. v2 has an expanded introduction, a revised section on the LERW intensity, and an expanded appendix on the annular matri

    Maximum Performance at Minimum Cost in Network Synchronization

    Full text link
    We consider two optimization problems on synchronization of oscillator networks: maximization of synchronizability and minimization of synchronization cost. We first develop an extension of the well-known master stability framework to the case of non-diagonalizable Laplacian matrices. We then show that the solution sets of the two optimization problems coincide and are simultaneously characterized by a simple condition on the Laplacian eigenvalues. Among the optimal networks, we identify a subclass of hierarchical networks, characterized by the absence of feedback loops and the normalization of inputs. We show that most optimal networks are directed and non-diagonalizable, necessitating the extension of the framework. We also show how oriented spanning trees can be used to explicitly and systematically construct optimal networks under network topological constraints. Our results may provide insights into the evolutionary origin of structures in complex networks for which synchronization plays a significant role.Comment: 29 pages, 9 figures, accepted for publication in Physica D, minor correction

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure

    Spanning forests and the vector bundle Laplacian

    Full text link
    The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. This theory gives a natural generalization of the spanning tree process adapted to graphs embedded on surfaces. We give a number of other applications, for example, we compute the probability that a loop-erased random walk on a planar graph between two vertices on the outer boundary passes left of two given faces. This probability cannot be computed using the standard Laplacian alone.Comment: Published in at http://dx.doi.org/10.1214/10-AOP596 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore