29 research outputs found

    The Complexity of Kings

    Full text link
    A king in a directed graph is a node from which each node in the graph can be reached via paths of length at most two. There is a broad literature on tournaments (completely oriented digraphs), and it has been known for more than half a century that all tournaments have at least one king [Lan53]. Recently, kings have proven useful in theoretical computer science, in particular in the study of the complexity of the semifeasible sets [HNP98,HT05] and in the study of the complexity of reachability problems [Tan01,NT02]. In this paper, we study the complexity of recognizing kings. For each succinctly specified family of tournaments, the king problem is known to belong to Π2p\Pi_2^p [HOZZ]. We prove that this bound is optimal: We construct a succinctly specified tournament family whose king problem is Π2p\Pi_2^p-complete. It follows easily from our proof approach that the problem of testing kingship in succinctly specified graphs (which need not be tournaments) is Π2p\Pi_2^p-complete. We also obtain Π2p\Pi_2^p-completeness results for k-kings in succinctly specified j-partite tournaments, k,j≥2k,j \geq 2, and we generalize our main construction to show that Π2p\Pi_2^p-completeness holds for testing k-kingship in succinctly specified families of tournaments for all k≥2k \geq 2

    On the existence and number of (k+1)(k+1)-kings in kk-quasi-transitive digraphs

    Full text link
    Let D=(V(D),A(D))D=(V(D), A(D)) be a digraph and k≥2k \ge 2 an integer. We say that DD is kk-quasi-transitive if for every directed path (v0,v1,...,vk)(v_0, v_1,..., v_k) in DD, then (v0,vk)∈A(D)(v_0, v_k) \in A(D) or (vk,v0)∈A(D)(v_k, v_0) \in A(D). Clearly, a 2-quasi-transitive digraph is a quasi-transitive digraph in the usual sense. Bang-Jensen and Gutin proved that a quasi-transitive digraph DD has a 3-king if and only if DD has a unique initial strong component and, if DD has a 3-king and the unique initial strong component of DD has at least three vertices, then DD has at least three 3-kings. In this paper we prove the following generalization: A kk-quasi-transitive digraph DD has a (k+1)(k+1)-king if and only if DD has a unique initial strong component, and if DD has a (k+1)(k+1)-king then, either all the vertices of the unique initial strong components are (k+1)(k+1)-kings or the number of (k+1)(k+1)-kings in DD is at least (k+2)(k+2).Comment: 17 page

    Generalizations of tournaments: A survey

    Get PDF

    Structure of directed graphs and hypergraphs

    Get PDF

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph D∈LD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/5−1(n/2)^{1/5}-1 leaves

    A new perspective from hypertournaments to tournaments

    Full text link
    A kk-tournament HH on nn vertices is a pair (V,A)(V, A) for 2≤k≤n2\leq k\leq n, where V(H)V(H) is a set of vertices, and A(H)A(H) is a set of all possible kk-tuples of vertices, such that for any kk-subset SS of VV, A(H)A(H) contains exactly one of the k!k! possible permutations of SS. In this paper, we investigate the relationship between a hyperdigraph and its corresponding normal digraph. Particularly, drawing on a result from Gutin and Yeo, we establish an intrinsic relationship between a strong kk-tournament and a strong tournament, which enables us to provide an alternative (more straightforward and concise) proof for some previously known results and get some new results.Comment: 10 page
    corecore