IMBALANCES OF BIPARTITE MULTITOURNAMENTS

Antal Iványi (Budapest, Hungary) Shariefuddin Pirzada and Nasir A. Shah (Srinagar, India)

Communicated by Imre Kátai

(Received January 15, 2012; revised March 18, 2012; accepted March 22, 2012)

Abstract. A bipartite (a, b, p, q)-tournament is a bipartite tournament in which the parts of the tournament contain p, resp. q vertices and the vertices belonging to different parts of the tournament are connected with at least a and at most b arcs. The imbalance of a vertex is defined as the difference of its outdegree and indegree. In this paper existence criteria and construction algorithms are presented for bipartite (0, b, p, q)-tournaments having prescribed imbalance sequences and prescribed imbalance sets.

1. Introduction

An active research topic of graph theory is the characterization of different special graphs (as simple, oriented, bipartite, multipartite, signed, semicomplete, and football graphs, see e.g. [1, 5, 10, 12, 14, 15, 17, 18, 19, 22, 33, 35]),

Key words and phrases: Multitournament, bipartite tournament, imbalance sequence, imbalance set.

²⁰¹⁰ Mathematics Subject Classification: 05C65.

¹⁹⁹⁸ CR Categories and Descriptors: G.2.2.

The first author received support from The European Union and the European Social Fund under the grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-0003.

and different generalizations (as hypergraphs, hypertournaments, weighted graphs, see e.g. [21, 30, 31]) having prescribed degree properties.

The classical results, as the theorem published by Landau in 1953 [16], and the theorem of Erdős and Gallai published in 1960 [4] contained necessary and sufficient conditions for the existence of a tournament, respectively of a simple graph with prescribed parameters. Later also constructive results appeared as the Havel-Hakimi theorem [8, 9] on simple graphs and the construction algorithm for optimal (a, b, n)-tournaments [13].

The structure of the paper is as follows. Section 2 contains some preliminary results, while Section 3 deals with imbalances of $(0, \infty, p, q)$ -tournaments. In Section 4 the reconstruction results of imbalance sequences are discussed, Section 5 is devoted to imbalance sets.

2. Preliminary notions and earlier results

Let a, b and n be nonnegative integers $(b \ge a \ge 0, n \ge 1)$, $\mathcal{T}(a, b.n)$ be the set of directed multigraphs T = (V, E), where |V| = n, and elements of each pair of different vertices $u, v \in V$ are connected with at least a and at most b arcs [11]. $T \in \mathcal{T}(a, b, n)$ is called (a, b, n)-tournament. (1, 1, n)-tournaments are the usual tournaments, and (0, 1, n)-tournaments are also called oriented graphs or simple directed graphs [6]. The set \mathcal{T} is defined by

$$\mathcal{T} = \bigcup_{b \ge 0, \ n \ge 1} \mathcal{T}(0, b, n).$$

According to this definition, \mathcal{T} is the set of the finite directed loopless multigraphs.

For any vertex $v \in V$ let $d(v)^+$ and $d(v)^-$ denote the outdegree and indegree of x, respectively. Define $f(v) = d(v)^+ - d(v)^-$ as the imbalance of the vertex v. The imbalance sequence of $T \in \mathcal{T}$ is formed by listing the vertex imbalances of the vertices in nonincreasing or nondecreasing order.

The following result due to Avery [1] and Mubayi, Will and West [19] provides a necessary and sufficient condition for a nonincreasing sequence F of integers to be the imbalance sequence of a tournament $T \in \mathcal{T}(0, 1, n)$.

Theorem 2.1. A nonincreasing sequence of integers $F = [f_1, \ldots, f_n]$ is an imbalance sequence of a tournament $T \in \mathcal{T}(0, 1, n)$ if and only if

$$\sum_{i=1}^{k} f_i \le k(n-k),$$

for $1 \leq k < n$ with equality when k = n.

Proof. See [1, 19].

Arranging the sequence F in nondecreasing order, we have the following equivalent assertion.

Corollary 2.1. A nondecreasing sequence of integers $F = [f_1, \ldots, f_n]$ is the imbalance sequence of a (0, 1, n)-tournament if and only if

$$\sum_{i=1}^{k} f_i \ge k(k-n)$$

for $1 \leq k < n$, with equality when k = n.

The following theorem gives a characterization of imbalance sequences of (0, b, n)-tournaments [28].

Theorem 2.2. If $b \ge 1$, then a nonincreasing sequence $F = [f_1, \ldots, f_n]$ of integers is the imbalance sequence of a (0, b, n)-tournament if and only if

$$\sum_{i=1}^{k} f_i \ge bk(n-k),$$

for $1 \leq k \leq n$ with equality when k = n.

Proof. See [28].

In [28] also a construction algorithm of a (0, b, n)-tournament can be found. Some other results on imbalances of (0, b, n)-tournaments and their special cases can be found in [12, 20, 29, 34].

Reid in 1978 [32] introduced the concept of the score set of (1, 1, n)-tournaments as the set of different scores (outdegrees) of the given tournament. At the same time he formulated the conjecture that for any set of nonnegative integers S there exists a tournament T having S as its score set. In the same paper he proved the conjecture for sets containing 1, 2, or 3 elements. Hager in 1986 [7] proved the conjecture for |S| = 4 and |S| = 5 and Yao in 1989 [36] published a proof of the whole conjecture.

There are some known results on the imbalance sets of (0, 1, n)-tournaments (see e.g. [23, 26, 28]).

3. Imbalances in $(0, \infty, p, q)$ -tournaments

Let a, b, p and q be nonnegative integers $(b \ge a \ge 0, p \ge 1, q \ge 1)$, $\mathcal{B}(a, b, p, q)$ be the set of directed bipartite multigraphs $B = (U \cup V, E)$, where

|U| = p and |V| = q, and the elements of each pair of vertices $u \in U$ and $v \in V$ are connected with at least a and at most b arcs. Then $B \in \mathcal{B}(a, b, p, q)$ is called (a, b, p, q)-tournament. $B \in \mathcal{B}(0, 1, p, q)$ is an oriented bipartite graph and a (1, 1, p, q)-tournament is a bipartite tournament.

According to this definition

$$\bigcup_{\substack{b \ge a \ge 0\\p \ge 1, \ q \ge 1}} \mathcal{B}$$

is the set of finite directed bipartite multigraphs.

For any vertex $v \in U \cup V$ of $T \in \mathcal{B}(a, b, p, q)$ let $d(v)^+$ and $d(v)^-$ denote the outdegree and indegree of v, respectively. Define $f(u) = d(u)^+ - d(u)^$ and $g(v) = d(v)^+ - d(v)^-$ as the imbalances of the vertex u for $u \in U$, resp. $v \in V$. Then the nonincreasing or nondecreasing sequences $F = [f_1, \ldots, f_p]$ and $G = [g_1, \ldots, g_q]$ are the imbalance sequences of the (a, b, p, q)-tournament $T = (U \cup V, E)$.

4. Reconstruction of imbalance sequences

This section starts with a necessary and sufficient condition for two sequences F and G to be imbalance sequences of some (0, b, p, q)-tournament. Then we deal with minimal reconstruction of imbalance sequences.

4.1. Existence of a realization of an imbalance sequence of a (0, b, p, q)-tournament

The following result is a combinatorial criterion for determining whether some prescribed sequences are realizable as imbalance sequences of a (0, b, p, q)tournament. This is analogous to a result on degree sequences of simple graphs by Erdős and Gallai [4] and a result on bipartite tournaments due to Beineke and Moon [2].

Theorem 4.1. Let b, p and q be positive integers. Two nonincreasing sequences $F = [f_1, \ldots, f_p]$ and $G = [g_1, \ldots, g_q]$ of integers are the imbalance sequences of some (0, b, p, q)-tournament if and only if

(4.1)
$$\sum_{i=1}^{k} f_i + \sum_{j=1}^{l} g_j \le bk(q-l) + bl(p-k)$$

for $1 \le k \le p$, $1 \le l \le q$, with equality when k = p and l = q.

Proof. The necessity follows from the fact that a directed bipartite subgraph of a (0, b, p, q)-tournament induced by k vertices from the first part and l vertices from the second part has a sum of imbalances 0, and these vertices can gather at most bk(q-l) + bl(p-k) imbalances from the remaining (q-l)and (p-k) vertices.

For sufficiency, assume that $F = [f_1, \ldots, f_p]$ and $G = [g_1, \ldots, g_q]$ are the sequences of integers in nonincreasing order satisfying conditions (4.1) but are not the imbalance sequences of any (0, b, p, q)-tournament. Let these sequences be chosen in such a way that p is the smallest possible and q is the smallest possible among the tournaments with the smallest p, and f_p is the least with that choice of p and q. We consider the following two cases.

Case (i). Suppose equality in (4.1) holds for some $k \leq p$ and l < q, so that

$$\sum_{i=1}^{k} f_i + \sum_{j=1}^{l} g_j = bk(q-l) + bl(p-k).$$

Consider the sequences

$$F' = [f'_i]_1^k = [f_1 - b(q - l), f_2 - b(q - l), \dots, f_k - b(q - l)]$$

and

$$G' = [g'_j]_1^l = [g_1 - b(p - k), g_2 - b(p - k), \dots, g_l - b(p - k)],$$

where for $1 \leq i \leq k$ and $1 \leq j \leq l$,

$$f_i' = f_i - b(q - l)$$

and

$$g_j' = g_j - b(p - k).$$

For $1 \le r < k$ and $1 \le s < l$, we have

$$\sum_{i=1}^{r} f'_i + \sum_{j=1}^{s} g'_j = \sum_{i=1}^{r} [f_i - b(q-l)] + \sum_{j=1}^{s} [g_j - b(p-k)] =$$

$$= \sum_{i=1}^{r} f_i + \sum_{j=1}^{s} g_j - rb(q-l) - sb(p-k) \le$$

$$\le b[r(q-s) + s(p-r)] - rb(q-l) - sb(p-k) \le$$

$$\le b[r(l-s) + s(k-r)]$$

and

$$\sum_{i=1}^{k} f'_{i} + \sum_{j=1}^{l} g'_{j} = \sum_{i=1}^{k} [f_{i} - b(q - l)] + \sum_{j=1}^{l} [g_{j} - b(p - k)] =$$
$$= \sum_{i=1}^{k} f_{i} + \sum_{j=1}^{l} g_{j} - kb(q - l) - lb(p - k) =$$
$$= b[k(q - l) + l(p - k)] - b[k(q - l) + l(p - k)] =$$
$$= 0.$$

Thus the sequences $F' = [f'_i]_1^k$ and $G' = [g'_j]_1^l$ satisfy (4.1) and by the minimality of p and q, F' and G' are the imbalance sequences of some (0, b, k, l)-tournament $B'(U' \cup V', E')$.

Let

$$F'' = [f_{k+1} + bl, f_{k+2} + bl, \dots, f_p + bl]$$

and

$$G'' = [g_{l+1} + bk, g_{l+2} + bk, \dots, g_q + bk]$$

We have for $1 \le r \le p - k$ and $1 \le s \le q - l$,

$$\begin{split} \sum_{i=1}^{r} [f_{k+i} + bl] + \sum_{j=1}^{s} [g_{l+j} + bk] &= \sum_{i=1}^{r} f_{k+i} + \sum_{j=1}^{s} g_{l+j} + rbl + sbk = \\ &= \sum_{i=1}^{k+r} f_i + \sum_{j=1}^{l+s} g_j - \left(\sum_{i=1}^{k} f_i + \sum_{j=1}^{l} g_j\right) + rbl + sbk \leq \\ &\leq b(k+r)[q - (l+s)] + b(l+s)[p - (k+r)] - \\ &- b[k(q-l) + l(p-k)] - rbl - sbk \leq \\ &\leq b[r(q-l-s) + s(p-k-r)], \end{split}$$

with equality when r = p - k and s = q - l. Therefore, by the minimality for p and q, the sequences F'' and G'' form the imbalance sequences of some (0, b, p - k, q - l)-tournament $B''(U'' \cup V'', E'')$.

Now construct a $(0,b,p,q)\text{-tournament }B(U\cup V,E)$ as follows.

Let $U = U' \cup U''$, $V = V' \cup V''$ and $U' \cap U'' = \phi$, $V' \cap V'' = \phi$ and arc set E containing those arcs which are between U' and V', and between U'' and V'', and b arcs from each vertex of U' to every vertex of V'', and b arcs from each vertex of U' to every vertex of V'', and b arcs from each vertex of U'. This is a contradiction.

Case (ii). Suppose that the strict inequality holds in (4.1) for all $k \neq p$ and $l \neq q$. That is,

$$\sum_{i=1}^{k} f_i + \sum_{j=1}^{l} g_j < bk(q-l) + bl(p-k)$$

for $1 \le k < p, \ 1 \le l < q$.

Let $F_1 = [f_1+1, f_2, \ldots, f_{p-1}, f_p-1]$ and $G_1 = [g_1, \ldots, g_q]$, so that F_1 and G_1 satisfy the conditions 4.1. Thus, by the minimality of f_p , the sequences F_1 and G_1 are the imbalances sequences of some (0, b, p, q)-tournament $B_1(U_1 \cup V_1)$. Let $f_{u_1} = f_1 + 1$ and $f_{u_p} = f_p + 1$. Since $f_{u_1} > f_{u_p} - 1$, therefore there exists a vertex $v \in V_1$ such that $u_1(0-0)v(1-0)u_p$, or $u_1(1-0)v(0-0)u_p$, or $u_p(1-0)v(1-0)u_1$, or $u_p(0-0)v(0-0)u_1$, in $D_1(U_1 \cup V_1, E_1)$ and if these are changed to $u_1(0-1)v(0-0)u_p$, or $u_1(0-0)v(0-1)u_p$, or $u_1(0-0)v(0-0)u_p$, or $u_1(0-1)v(0-1)u_p$ respectively, the result is a (0, b, p, q)-tournament with imbalance sequences F and G, which is a contradiction proving the result.

Since (0, 1, p, q)-tournaments (oriented graphs) are special (a, b, p, q)-tournaments, the following corollary of Theorem 4.1 gives a necessary and sufficient condition for nonincreasing sequences of integers to be imbalance sequences of some (0, 1, p, q)-tournament.

Corollary 4.1. Two nonincreasing sequences $F = [f_1, \ldots, f_p]$ and $G = [g_1, \ldots, g_q]$ of integers are the imbalance sequences of some (0, 1, p, q)-tournament if and only if

(4.2)
$$\sum_{i=1}^{k} f_i + \sum_{j=1}^{l} g_j \le k(q-l) + l(p-k),$$

for $1 \le k \le p$, $1 \le l \le q$ with equality when k = p and l = q.

Proof. Let us substitute b = 1 into (4.1).

Another simple property of imbalance sequences of (a, b, p, q)-tournaments is

(4.3)
$$\sum_{i=1}^{p} f_i + \sum_{j=1}^{q} g_j = 0.$$

For arbitrary sequences of integer numbers F and G satisfying (4.3) one can find such a b that F and G are imbalance sequences of some (0, b, p, q)-tournament. We are interested in the minimal such b.

Let F_{max} , G_{max} , and z be defined as follows:

$$F_{max} = \max_{1 \le i \le p} |f_i|,$$
$$G_{max} = \max_{1 \le i \le p} |g_j|,$$

and

(4.4)
$$z = \max(F_{max}, G_{max}).$$

The following assertion gives lower and upper bound for b_{min} .

Lemma 4.1. If $p \ge 1$ and $q \ge 1$, then

(4.5)
$$\max\left(\left\lceil \frac{F_{\max}}{q}\right\rceil, \left\lceil \frac{G_{\max}}{p}\right\rceil\right) \le b_{\min} \le \max(F_{\max}, G_{\max}).$$

Proof. From one side it is easy to construct a (0, z, p, q)-tournament, where z is defined in (4.4), and from the other side even the uniform allocation of the degrees requires

(4.6)
$$b \ge \max\left(\left\lceil \frac{F_{max}}{q}\right\rceil, \left\lceil \frac{G_{max}}{p}\right\rceil\right).$$

We are interested in the least possible b allowing the realization of F and G.

4.2. Computation of b_{min} for a (0, b, p, q)-tournament

We are interested in the computation of the minimal value of b, satisfying (4.1). Using Theorem 4.1 we can compute b_{min} .

Let

$$\alpha(b,k,l) = \sum_{i=1}^{k} f_i + \sum_{j=1}^{l} g_j$$

and

$$\beta(b,k,l) = bk(q-l) + bl(p-k)$$

for $1 \le i \le p$ and $1 \le j \le q$.

The following theorem allows quickly to compute b_{min} .

Theorem 4.2. Two nonincreasing sequences $F = [f_1, \ldots, f_p]$ and $G = [g_1, \ldots, g_q]$ of integers are the imbalance sequences of some (0, b, p, q)-tournament B if and only if $b \ge b_{min}$, where

(4.7)
$$b_{min} = \min_{1 \le k \le p, 1 \le l \le q} \{ b \mid \alpha(b,k,l) \le \beta(b,k,l) \}.$$

Proof. If k = p and l = q, then both sides of (4.1) are equal to zero, otherwise the right side is positive and a multiple of b, therefore (4.7) holds, if b is sufficiently large.

The following program MINIMAL is based on Theorem 4.2. The pseudocode uses the conventions described in [3].

Input. p and q: the numbers of the elements in the prescribed imbalance sequences;

 $F = [f_1, \ldots, f_p]$ and $G = [g_1, \ldots, g_q]$: given nonincreasing sequences of integers.

Output. b_{min} : the minimal number of allowed arcs between two vertices belonging to different parts of B.

Working variables. i, j: cycle variables; S: actual sum of the imbalances; $L = \alpha(b, k, l)$: the actual value of the left side of (4.1).

 $MINIMAL(p, q, F, G, b_{min})$

```
01 S = 0
02 F_{\max} = \max(|f_1|, |f_p|)
03 \ G_{\max} = \max(|g_1|, |g_q|)
\begin{array}{l} 04 \ b_{min} = \max(\lceil \frac{F_{\max}}{q} \rceil, \lceil \frac{G_{\max}}{p} \rceil) \end{array}
05 for i = 1 to p
          S = S + f_i
06
          L = S
07
         for j = 1 to q
08
09
               L = S + g_i
               b_{min} = \max(b_{min}, \lceil (L/[i((q-j)+j(p-i)+j(p-i)]]) \rceil
10
                    b_{min} = \max(F_{\max}, G_{\max})
11
               if
12
                     return b_{min}
13 return b_{min}
```

MINIMAL computes b_{min} in all cases in O(pq) time.

5. Imbalance sets in bipartite multidigraphs

K. B. Reid in 1978 [32] introduced the concept of the score set of tournaments as the set of different scores (outdegrees) of a tournament. At the same time he formulated the conjecture that for any set of nonnegative integers Sthere exists a tournament T having S as its score set. At the same time he proved the conjecture for sets containing 1, 2, or 3 elements. Hager in 1986 [7] proved the conjecture for |S| = 4 and |S| = 5 and Yao [36] published a proof of the conjecture.

In an analogous manner we define the imbalance set of a bipartite multigraph $B = (U \cup V, E)$ as the union of the sets of different imbalances of the vertices in U and V.

5.1. Existence of a (0, 1, p, p)-tournament with prescribed imbalance sets

First we show the existence of a (0, 1, p, q)-tournament with given set of integers as imbalance sets.

Theorem 5.1. Let $p, f_1, \ldots, f_p, g_1, \ldots, g_p$ be positive integers and let $F = [f_1, \ldots, f_p]$ and $Q = [-g_1, \ldots, -g_p]$, where $f_1 < \cdots < f_p, g_1 < \cdots < g_p$, and $(f_1, \ldots, f_p, g_1, \ldots, g_p) = t$. Then there exists a (0, 1, p, p)-tournament with imbalance set $F \cup G$.

Proof. Construct a (0, 1, p, p)-tournament $B(U \cup V, E)$ as follows. Let $U = U_1 \cup \cdots \cup U_p, V = V_1 \cup \cdots \cup V_p$ with $U_i \cap U_j = \emptyset$ $(i \neq j), V_i \cap V_j = \emptyset$ $(i \neq j), |U_i| = g_i$ for all $i, 1 \leq i \leq p$ and $|V_j| = f_j$ for all $j, 1 \leq j \leq p$. Let there be an arc from every vertex of U_i to each vertex of V_i for all $i, 1 \leq i \leq p$, so that we obtain the (0, 1, p, p)-tournament $B(U \cup V, E)$ with the given imbalance sets of vertices as follows.

For $1 \leq i, j \leq p$, $f_u = |V_i| - 0 = f_i$, for all $u \in U_i$ and $g_v = 0 - |U_j| = -g_j$, for all $v \in V_j$.

Therefore, the imbalance set of $B(U \cup V, E)$ is $F \cup G$.

5.2. Existence of a (0, b, p, p)-tournament with prescribed imbalance sets

Finally, we prove the existence of a (0, b, p, p)-tournament with prescribed sets of positive integers as its imbalance set.

Let $(f_1, \ldots, f_p, g_1, \ldots, g_p)$ denote the greatest common divisor of $f_1, \ldots, f_p, g_1, \ldots, g_p$.

Theorem 5.2. Let $b, p, f_1, \ldots, f_p, g_1, \ldots, g_p$ be positive integers and let $F = [f_1, \ldots, f_p]$ and $G = [-g_1, \ldots, -g_p]$, where $f_1 < \cdots < f_p, g_1 < \cdots < g_p$, and $(f_1, \ldots, f_p, g_1, \ldots, g_p) = t \le b$. Then there exists a (0, b, p, p)-tournament with imbalance set $F \cup G$.

Proof. Since $(f_1, \ldots, f_p, g_1, \ldots, g_p) = t$, where $1 \le t \le b$, there exist positive integers $x_1, \ldots, x_p, y_1, \ldots, y_p$ with $x_1 < \cdots < x_p, y_1 < \cdots < y_p$ such that $f_i = tx_i$ for $1 \le i \le p$ and $g_j = ty_j$ for $1 \le j \le p$.

Construct a (0, b, p, p)-tournament $B(U \cup V, E)$ as follows. Let $U = U_1 \cup \cdots \cup U_p$, $V = V_1 \cup \cdots \cup V_p$ with $U_i \cap U_j = \emptyset$, $V_i \cap V_j = \emptyset$, $i \neq j$, $|U_i| = x_i$ for all $i, 1 \leq i \leq p$, $|V_i| = x_i$ for all $i, 1 \leq i \leq p$. Let there be t arcs directed from every vertex of U_i to each vertex of V_i for all $i, 1 \leq i \leq p$, so that we obtain the (0, b, p, p)-tournament $B(U \cup V, E)$ with the imbalances of vertices as follows.

For $1 \leq i \leq p$,

$$f_u = t|V_i| - 0 = tx_i = f_i$$
, for all $u \in U_i$,
 $g_v = 0 - t|U_i| = -ty_1 = -g_1$, for all $v \in V_i$.

Therefore the imbalance set of $B(U \cup V, E)$ is $F \cup G$.

An overview of the results on score sets can be found in [24, 32] and special results in [12, 23, 28, 34].

Acknowledgement. The authors thank Péter Burcsi for his useful remarks and Zoltán Király (both Eötvös Loránd University) for the recommendation of useful references.

References

- Avery P., Score sequences of oriented graphs, J. Graph Theory 15(3) (1991), 251–257.
- [2] Beineke, L.W. and J.W. Moon, On bipartite tournaments and scores, in *The Theory of Applications of Graphs*, John Wiley and Sons, Inc., New York, 1981, pp. 55–71.

- [3] Cormen, T.H., C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, Third edition, MIT Press/McGraw Hill, Cambridge/New York, 2009.
- [4] Erdős, P. and T. Gallai, Graphs with prescribed degrees of vertices, (Hungarian) Mat. Lapok 11 (1960), 264–274.
- [5] Garg, A.A. Goel and A. Tripathi, Constructive extensions of two results on graphic sequences. *Discrete Appl. Math.* 159(17) (2011), 2170– 2174.
- [6] Gross, J.L. and J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, 2004.
- [7] Hager, M., On score sets for tournaments, Discrete Math. 58(1) (1986), 25–34.
- [8] Hakimi, S.L., On realizability of a set of integers as degrees of the vertices of a simple graph, J. SIAM Appl. Math. 10 (1962), 496–506.
- [9] Havel, V., A remark on the existence of finite graphs, (Czech) Casopis Pĕst. Mat. 80 (1955), 477–480.
- [10] Hell., P. and D. Kirkpatrick, Linear-time certifying algorithms for near graphical sequences, *Discrete Math.* 309(18) (2009) 5703–5713.
- [11] Iványi, A., Reconstruction of complete interval tournaments, Acta Univ. Sapientiae, Inform. 1(1) (2009), 71–88.
- [12] Iványi, A., Deciding football tournaments, Acta Univ. Sapientiae, Inform. 4(1) (2012), to appear.
- [13] Iványi, A., Reconstruction of complete interval tournaments II, Acta Univ. Sapientiae, Math. 2(1) (2010), 47–71.
- [14] Iványi, A., L. Lucz, F.T. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform. 3(2) (2011), 230–269.
- [15] Iványi, A., S. Pirzada, Comparison based ranking, in (ed. A. Iványi) Algorithms of Informatics, Vol. 3, AnTonCom, Budapest, 2011, pp. 1262– 1311,
- [16] Landau, H.G., On dominance relations and the structure of animal societies. III. The condition for a score structure, *Bull. Math. Biophys.* 15 (1953), 143–148.
- [17] Moon, J.W., On the score sequence of an N-partite tournament, Can. Math. Bull. 5 (1962), 51–58.
- [18] Moon, J.W., An extension of Landau's theorem, *Pacific J. Math.* 13 (1963), 1343–1345.
- [19] Mubayi, D., T.G. Will and D.B. West, Realizing degree imbalances in directed graphs, *Discrete Math.* 239(1–3) (2001), 147–153.
- [20] Pirzada, S., On imbalances in digraphs, Kragujevac J. Math. 31 (2008), 143–146.

- [21] Pirzada, S., Degree sequences of k-multi-hypertournaments. Appl. Math. J. Chinese Univ. Ser. B., 24(3) (2009), 350-354.
- [22] Pirzada, S., Graph Theory, Orient BlackSwan, Hyderabad, 2012.
- [23] Pirzada, S., A. M. Al-Assaf and K. K. Kayibi, On imbalances in oriented multipartite graphs, Acta Univ. Sapientiae, Math. 3(1) (2011), 34–42.
- [24] Pirzada, S., A. Iványi and M.A. Khan, Score sets and kings, in (ed. A. Iványi) Algorithms of Informatics, Vol. 3, AnTonCom, Budapest, 2011, pp. 1451–1490.
- [25] Pirzada, S., Merajuddin and Y. Jainhua, On the scores of oriented bipartite graphs, J. Math. Study 33(4) (2000), 354–359.
- [26] Pirzada, S. and T.A. Naikoo, Score sets in oriented graphs. Appl. Anal. Discrete Math. 2(1) (2008), 107–113.
- [27] Pirzada, S., T.A. Naikoo and T.A. Chishti, Score sets in oriented bipartite graphs, Novi Sad J. Math. 36(1) (2006), 35–45.
- [28] Pirzada, S., T.A. Naikoo, U. Samee and A. Iványi, Imbalances in directed multigraphs, Acta Univ. Sapientiae, Inform. 2(2) (2010), 137– 145.
- [29] Pirzada, S., T.A. Naikoo and N.A. Shah, Imbalances in oriented tripartite graphs, Acta Math. Sinica 27(5) (2011), 927–932.
- [30] Pirzada, S. and G. Zhou, On k-hypertournament losing scores, Acta Univ. Sapientiae, Inform. 2(1) (2010), 5–9.
- [31] Pirzada, S., G. Zhou and A. Iványi, Score lists of multipartite hypertournaments, Acta Univ. Sapientiae, Inform. 2(2) (2010), 184–193.
- [32] Reid, K.B., Score sets for tournaments. Proc. Ninth Southeastern Conf. Comb., Graph Theory, Computing (Florida Atlantic Univ., Boca Raton, FL, 1978), pp. 607–618, Congress. Numer., XXI, 1978.
- [33] Reid, K.B. and C.Q. Zhang, Score sequences of semicomplete digraphs, Bull. Inst. Combin. Appl. 24 (1998), 27–32.
- [34] Samee, U. and T.A. Chishti, Imbalances in oriented bipartite graphs, Eurasian Math. Journal 1(2) (2010), 136–141.
- [35] Takahashi, M., Optimization Methods for Graphical Degree Sequence Problems and their Extensions. PhD thesis. Waseda University, Graduate School of Information, Production and Systems, Tokyo, 2007. http://hdl.handle.net/2065/28387
- [36] Yao, T.X., On Reid conjecture of score sets for tournaments. *Chinese Sci. Bull.* 34(10) (1989), 804–808.

A. Iványi

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University Pázmány Péter sétány 1/C H-1117 Budapest, Hungary tony@compalg.inf.elte.hu

S. Pirzada and N.A. Shah

University of Kashmir Department of Mathematics Srinagar India sdpirzada@yahoo.co.in nasir.shah@rediffmail.com