4,635 research outputs found

    Treewidth versus clique number. IV. Tree-independence number of graphs excluding an induced star

    Full text link
    Many recent works address the question of characterizing induced obstructions to bounded treewidth. In 2022, Lozin and Razgon completely answered this question for graph classes defined by finitely many forbidden induced subgraphs. Their result also implies a characterization of graph classes defined by finitely many forbidden induced subgraphs that are (tw,ω)(tw,\omega)-bounded, that is, treewidth can only be large due to the presence of a large clique. This condition is known to be satisfied for any graph class with bounded tree-independence number, a graph parameter introduced independently by Yolov in 2018 and by Dallard, Milani\v{c}, and \v{S}torgel in 2024. Dallard et al. conjectured that (tw,ω)(tw,\omega)-boundedness is actually equivalent to bounded tree-independence number. We address this conjecture in the context of graph classes defined by finitely many forbidden induced subgraphs and prove it for the case of graph classes excluding an induced star. We also prove it for subclasses of the class of line graphs, determine the exact values of the tree-independence numbers of line graphs of complete graphs and line graphs of complete bipartite graphs, and characterize the tree-independence number of P4P_4-free graphs, which implies a linear-time algorithm for its computation. Applying the algorithmic framework provided in a previous paper of the series leads to polynomial-time algorithms for the Maximum Weight Independent Set problem in an infinite family of graph classes.Comment: 26 page

    Extremal problems involving forbidden subgraphs

    Get PDF
    In this thesis, we study extremal problems involving forbidden subgraphs. We are interested in extremal problems over a family of graphs or over a family of hypergraphs. In Chapter 2, we consider improper coloring of graphs without short cycles. We find how sparse an improperly critical graph can be when it has no short cycle. In particular, we find the exact threshold of density of triangle-free (0,k)(0,k)-colorable graphs and we find the asymptotic threshold of density of (j,k)(j,k)-colorable graphs of large girth when k2j+2k\geq 2j+2. In Chapter 3, we consider other variations of graph coloring. We determine harmonious chromatic number of trees with large maximum degree and show upper bounds of rr-dynamic chromatic number of graphs in terms of other parameters. In Chapter 4, we consider how dense a hypergraph can be when we forbid some subgraphs. In particular, we characterize hypergraphs with the maximum number of edges that contain no rr-regular subgraphs. We also establish upper bounds for the number of edges in graphs and hypergraphs with no edge-disjoint equicovering subgraphs

    Towards an Isomorphism Dichotomy for Hereditary Graph Classes

    Get PDF
    In this paper we resolve the complexity of the isomorphism problem on all but finitely many of the graph classes characterized by two forbidden induced subgraphs. To this end we develop new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop a methodology to show isomorphism completeness of the isomorphism problem on graph classes by providing a general framework unifying various reduction techniques. Second, we generalize the concept of the modular decomposition to colored graphs, allowing for non-standard decompositions. We show that, given a suitable decomposition functor, the graph isomorphism problem reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of bounded color valence and hypergraph isomorphism on hypergraphs of bounded color size as follows. We say a colored graph has generalized color valence at most k if, after removing all vertices in color classes of size at most k, for each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded generalized color valence can be solved in polynomial time.Comment: 37 pages, 4 figure

    On bounding the difference between the maximum degree and the chromatic number by a constant

    Full text link
    We provide a finite forbidden induced subgraph characterization for the graph class Υk\varUpsilon_k, for all kN0k \in \mathbb{N}_0, which is defined as follows. A graph is in Υk\varUpsilon_k if for any induced subgraph, Δχ1+k\Delta \leq \chi -1 + k holds, where Δ\Delta is the maximum degree and χ\chi is the chromatic number of the subgraph. We compare these results with those given in [O. Schaudt, V. Weil, On bounding the difference between the maximum degree and the clique number, Graphs and Combinatorics 31(5), 1689-1702 (2015). DOI: 10.1007/s00373-014-1468-3], where we studied the graph class Ωk\varOmega_k, for kN0k \in \mathbb{N}_0, whose graphs are such that for any induced subgraph, Δω1+k\Delta \leq \omega -1 + k holds, where ω\omega denotes the clique number of a graph. In particular, we give a characterization in terms of Ωk\varOmega_k and Υk\varUpsilon_k of those graphs where the neighborhood of every vertex is perfect.Comment: 10 pages, 4 figure
    corecore