30 research outputs found

    The number of connected sparsely edged uniform hypergraphs

    Get PDF
    AbstractCertain families of d-uniform hypergraphs are counted. In particular, the number of connected d-uniform hypergraphs with r vertices and r + k hyperedges, where k = o(log r/ log log r), is found

    Creation and Growth of Components in a Random Hypergraph Process

    Full text link
    Denote by an \ell-component a connected bb-uniform hypergraph with kk edges and k(b1)k(b-1) - \ell vertices. We prove that the expected number of creations of \ell-component during a random hypergraph process tends to 1 as \ell and bb tend to \infty with the total number of vertices nn such that =o(nb3)\ell = o(\sqrt[3]{\frac{n}{b}}). Under the same conditions, we also show that the expected number of vertices that ever belong to an \ell-component is approximately 121/3(b1)1/31/3n2/312^{1/3} (b-1)^{1/3} \ell^{1/3} n^{2/3}. As an immediate consequence, it follows that with high probability the largest \ell-component during the process is of size O((b1)1/31/3n2/3)O((b-1)^{1/3} \ell^{1/3} n^{2/3}). Our results give insight about the size of giant components inside the phase transition of random hypergraphs.Comment: R\'{e}sum\'{e} \'{e}tend

    Counting connected hypergraphs via the probabilistic method

    Full text link
    In 1990 Bender, Canfield and McKay gave an asymptotic formula for the number of connected graphs on [n][n] with mm edges, whenever nn and the nullity mn+1m-n+1 tend to infinity. Asymptotic formulae for the number of connected rr-uniform hypergraphs on [n][n] with mm edges and so nullity t=(r1)mn+1t=(r-1)m-n+1 were proved by Karo\'nski and \L uczak for the case t=o(logn/loglogn)t=o(\log n/\log\log n), and Behrisch, Coja-Oghlan and Kang for t=Θ(n)t=\Theta(n). Here we prove such a formula for any r3r\ge 3 fixed, and any t=t(n)t=t(n) satisfying t=o(n)t=o(n) and tt\to\infty as nn\to\infty. This leaves open only the (much simpler) case t/nt/n\to\infty, which we will consider in future work. ( arXiv:1511.04739 ) Our approach is probabilistic. Let Hn,prH^r_{n,p} denote the random rr-uniform hypergraph on [n][n] in which each edge is present independently with probability pp. Let L1L_1 and M1M_1 be the numbers of vertices and edges in the largest component of Hn,prH^r_{n,p}. We prove a local limit theorem giving an asymptotic formula for the probability that L1L_1 and M1M_1 take any given pair of values within the `typical' range, for any p=p(n)p=p(n) in the supercritical regime, i.e., when p=p(n)=(1+ϵ(n))(r2)!nr+1p=p(n)=(1+\epsilon(n))(r-2)!n^{-r+1} where ϵ3n\epsilon^3n\to\infty and ϵ0\epsilon\to 0; our enumerative result then follows easily. Taking as a starting point the recent joint central limit theorem for L1L_1 and M1M_1, we use smoothing techniques to show that `nearby' pairs of values arise with about the same probability, leading to the local limit theorem. Behrisch et al used similar ideas in a very different way, that does not seem to work in our setting. Independently, Sato and Wormald have recently proved the special case r=3r=3, with an additional restriction on tt. They use complementary, more enumerative methods, which seem to have a more limited scope, but to give additional information when they do work.Comment: Expanded; asymptotics clarified - no significant mathematical changes. 67 pages (including appendix

    A note on Pr\"ufer-like coding and counting forests of uniform hypertrees

    Full text link
    This note presents an encoding and a decoding algorithms for a forest of (labelled) rooted uniform hypertrees and hypercycles in linear time, by using as few as n2n - 2 integers in the range [1,n][1,n]. It is a simple extension of the classical Pr\"{u}fer code for (labelled) rooted trees to an encoding for forests of (labelled) rooted uniform hypertrees and hypercycles, which allows to count them up according to their number of vertices, hyperedges and hypertrees. In passing, we also find Cayley's formula for the number of (labelled) rooted trees as well as its generalisation to the number of hypercycles found by Selivanov in the early 70's.Comment: Version 2; 8th International Conference on Computer Science and Information Technologies (CSIT 2011), Erevan : Armenia (2011

    On vertex independence number of uniform hypergraphs

    Get PDF
    Abstract Let H be an r-uniform hypergraph with r ≥ 2 and let α(H) be its vertex independence number. In the paper bounds of α(H) are given for different uniform hypergraphs: if H has no isolated vertex, then in terms of the degrees, and for triangle-free linear H in terms of the order and average degree.</jats:p
    corecore