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Abstract  

Certain families of  d-uniform hypergraphs are counted. In particular, the number of  connected 
d-uniform hypergraphs with r vertices and r + k hyperedges, where k = o(log r/log tog r) ,  is 
found. 

I. Introduction 

In this paper we are concerned with counting members of families of labelled d- 
uniform hypergraphs with a given number of vertices and hyperedges. The description 
of these families, although simple, is not very short, so we postpone precise statements 
of our main results (Theorems 8 and 9) until the last section of the article. Here we 
only recall shortly some of the known facts of a similar flavour concerning 'ordinary' 
graphs. 

Let c2(n,k) denote the number of labelled graphs with n vertices and n + k edges. 
Thus, for instance, c2(n,-1) is the number of labelled trees on n vertices equal to 
n n-2. Connected graphs with exactly one cycle were counted by Katz [7] and Rrnyi 
[12], while the case k = 1 was settled by Bagaev [1]. A substantial progress in the 
studies of the asymptotic behaviour of c2(n,k) for large k was made by Wright. In the 
sequence of papers [14-16] he studied generating functions of the number of various 
classes of connected graphs with n vertices and n + k edges, proving, among others, 
the following result. 
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Theorem 1. I f  1 ~<k = o(n 1/3) then 

k I ,-,~ u3/~-Y~- -/g-£- 3 ( k -  1). _n+(3k-1)/2 
c2(n,k ) = (1 + vt.V ~ / n  l lv  ,~,~k ~5k F(3k/2 ) n 

where 

k -  1 O~iO~k_i 
O~ 1 = O~ 2 = 5 and ¢~k+l = ~,~ + ~ for k>>.2. 

i=l (k  "~ 11(~) 
(1) 

The problem of computing c2(n,k) was, in full generality, solved by Bender et al. 
who found in [2] the asymptotic value of c2(n,k) for every k = k(n) for which 
0 ~< k ~< (2) - n  (the statement of their result is somewhat complicated, so we omit it 
here). Quick methods of estimation of c2(n, k) were developed also by Bollob~is [3] 
and Luczak [8]. Finally, we remark that for the last few years a powerful stimulus 
for investigating the behaviour of c2(n,k) has come from the random graph theory, 
where the value of c2(n,k) plays a crucial role in the studies of the phase transition 
phenomenon (see [4,5]), and in several papers on random graphs, as [9-11] and in 
particular in the article of Janson et al. [6], the structure of a 'typical' connected graphs 
with n vertices and n + k edges has also been examined. 

Much less is known about the number of hypergraphs of a prescribed size. Up to 
our knowledge, the only result in this direction was proved by Selivanov [13], who 
counted generalized rooted forests (see Lemma 5 in this note) and connected uniform 
hypergraphs with at most one cycle. Our goal is to obtain a theorem analogous to that 
of Wright for uniform hypergraphs. Thus, in the next section we introduce some basic 
definitions, which naturally generalize graph properties to hypergraphs. Then we study 
the kernel of a hypergraph H: a small hypergraph obtained from H which captures the 
main features of its structure. The next part of the paper deals with 'clean' uniform 
hypergraphs, which turn out to be particularly easy to count. Then we show that most 
of the hypergraphs which are not too dense are, in fact, clean. As a consequence 
of this fact we get estimates for the size of different classes of complex d-uniform 
hypergraphs. 

Let us also mention that, unlike arguments used by Wright [14-16], and Bender 
et al. [2] based on delicate analysis of the behaviour of naturally defined generating 
functions, our approach is purely combinatorial (however, in the proof of Lemma 7, 
we make use of Theorem 1). 

2. The structure of hypergraphs 

Let us start with a few simple definitions concerning hypergraphs: as a matter of 
fact most of them are rather straightforward generalizations of corresponding notions 
for graphs. 

A hypergraph H is a pair (V,E), where the set of hyperedges E is the family of 
subset of the vertex set V. A sequence of voelvl ...ekvk, where v; are vertices of H, 
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ei are its hyperedges, and vi-l,vi Eei  for i = 1,2 . . . . .  k, is called a walk of  length 
k between v0 and vk. By a component of  H = (V,E) containing v E V we mean a 

subhypergraph which consists of  all vertices v' and edges e' which belong to some 

walk containing v. H is connected if it has only one component. 

The excess of  a hypergraph H = (V,E) is defined as 

e x ( n )  : ~ ( l e [ -  1 ) -  IVl~ - 1.  
eEE 

A hypergraph is called a forest if  all its components have excess - 1. On the other 

hand, we say that a hypergraph is complex if the excess of  each of  its components is 

strictly positive. 

A degree of  a vertex v E V is the number hyperedges containing v. A hyperedge e 

is called pendant if all vertices o f  e, except at most one, are o f  degree one, i.e. belong 

to no other hyperedges o f  hypergraph. A hypergraph without pendant hyperedges is 

smooth. It is not hard to observe that if at least one component o f  a hypergraph H 

has a non-negative excess than H contains a unique maximal smooth subhypergraph 

which can be found in the process o f  'peeling off '  pendant edges from H. We call this 

subhypergraph the core of  H and denote it by cor(H).  Note that since the removing 

of  a pendant hyperedge e together with lel - 1 isolated vertices produced in this way 

does not change the excess of  a graph, for every complex hypergraph H we have 
ex(H)  = ex(cor(H)).  

As the core is obtained from the hypergraph by eliminating pendant vertices, the 

kemel is a result o f  compressing paths of  the core. A proper path in H is defined as 

a walk voelvl...ekvk such that: 

• all vertices Vo . . . . .  vk are different and all o f  them (including v0 and vk) have degree 

two in the hypergraph; 

• all edges el . . . .  ,ek are different and for every i = 1 . . . . .  k, and every v E e\{vi-l ,vi},  
the degree of  v is one. 

A proper path is maximal if it is not contained in any other proper path. Now, for a 

complex hypergraph H,  replace in the core of  H each maximal proper path joining 

vertices v and v' by a chain, i.e. a new edge {v,v'}. Note that unlike cor(H)  the 

hypergraph ker(H)  obtained in this procedure, called the kernel of  H,  may not be a 

subhypergraph of  H (ker(H) may contain some chains even when all hyperedges of  

H consists o f  more than two elements). Nevertheless, replacing proper paths by edges 

does not affect the excess of  a hypergraph, so ex ker(H)  = ex(cor(H))  = ex(H).  

3. Clean hypergraphs 

As we shall soon see the size o f  the kernel of  a hypergraph depends not on its size 

but only on its excess. Thus, if  the excess of  a hypergraph is not too large, its kemel 
is a small hypergraph which reflects the most characteristic structural features of  H.  
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Hence, the analysis of  the structure of  the kemel of a complex hypergraph will be 
crucial for our argument. 

For a kernel K let K -  denote the hypergraph obtained from K by removing all 

chains. We say that a component of  K -  is a 3-star, if it consists of  three hyperedges 

el,e2,e3 such that 

el fq e2 : el A e3 = e2 A e3 : {v} 

and each of el, e2, e3 contains precisely one vertex which becomes the end of the chain 
in K. The kernel K of a hypergraph is clean if  every component of  K -  is either a 
3-star, or an isolated hyperedge with precisely three vertices which are ends of  chains 

in K. Finally, we call a hypergraph clean if  its kernel is clean. 
Clean kernels play an important role in counting complex hypergraphs because they 

maximize the number of  chains. This is true for any complex hypergraphs of a given 

excess, but for simplicity we prove this fact only for d-uniform hypergraphs i.e. hy- 
pergraphs in which each hyperedge consists of precisely d i> 2 vertices. 

Claim 2. I f  K is a kernel of  a complex d-uniform hypergraph with excess k, then it 
has at most 3k chains, and this maximum is attained only for clean kernels. 

Furthermore, every kernel of  such a complex d-uniform hypergraph has at most 
2k(3d - 2) ~< 6kd vertices. 

Proof. Since the case when d = 2 is obvious, we assume that d ~> 3. For every kernel 
K of a complex d-uniform hypergraph with excess k which is not clean we define 
another hypergraph g(K) such that g(K) is also the kernel of  some complex d-uniform 

hypergraph with excess k, but g(K) has more chains and more vertices than K. Fur- 
thermore, the transformation g will have the property that for every kernel K there 

exists i ~< 3k such that the kernel 

d ( K )  = g(g(.., g( K)...)) 
i 

is clean. Since each clean kernel of a hypergraph with excess k has precisely 3k chains 
and at most 2 k ( 3 d -  2)<~6kd vertices, the assertion will follow. 

Thus, for a given K, we must construct another kernel g(K). We split the definition 

of g(K) into several cases. 
Case 1. K contains a vertex v which belong to precisely two hyperedges of size d. 
Let v be the lexicographically first vertex of the above type, and let el A e2 = {v}, 

where l e l l  = le21 = d. Then, to obtain g(K), add to K a new vertex w, label it by the 
first available label, replace e2 by e3 = e2 \ {v} tO {w} and add additional chain {v,w}. 

Case 2. Two hyperedges of K of size d share at least two vertices. 
Let el Aez _~{vl, v2} be first two hyperedges and first two vertices with this property. 

To get g(K) we add new vertices wo, wl . . . . .  Wd, replace e2 by e3 • e2 \ (/)1} [A {w0}, 

and add a new hyperedge {Wl . . . . .  wd} and chains {wo, wl} and {w2,w3}. 
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Case 3. There exist hyperedges el . . . . .  es, all o f  size d, such that 

el he2  71e3 = {1)l},el 71e4 n e s  = {1)2}, where 1)1 # / ) 2 .  

In this case we enlarge K by new vertices wo . . . . .  wd-1, put e6 ----- el \ {Vl} tO {wo} 

instead of  el, add a new hyperedge e7 = {Vz, wl . . . .  wk-1} and a chain {wo, wl}. 

Case 4. There exists a hyperedge e, which is not isolated in K - ,  such that two 

vertices of  e, say Vl and v2, belong to chains. 

Choose lexicographically first e with this property and, if possible, let Vl, v2 C e 

be ends of  a chain (if no chain is contained in e choose as Vl, v2 lexicographically 

first vertices of  e). To obtain 9(K) add Wl . . . . .  wd new vertices to K together with a 

hyperedge {Wl . . . . .  Wd}. Now consider two subcases: 

(1) if  {Vl,Vz} is a chain replace it by {vl,wl} and {we,w3}, 

(2) if K contains chains {vl,v'l} and {v2, v'2} replace them by {vl,wl}, {V'l,W2}, 
{4,w3}. 

Case 5. There exists {v} which belong to at least four hyperedges o f  size d. 

Let el 71 e2 7/e3 71 e4 = {vl }. Note that because Cases 1-4 do not apply, for each 

i = 1,2, 3,4, the hyperedge ei contains precisely one vertex of  degree at least four and 

one vertex which is the end of  a chain - all other vertices of  e i are of  degree one. 

Let el = {1)1,1)2 . . . . .  1)d}, where 1)2 is the end of  a chain, and let {v',1)"} be any chain 

such that {v',v"} Ael = {~ but {v',v"} U(e2 Ue3 Ue4) ~g ~. Now we add a new vertex 

w to K and replace el by es = e, \ {Vl} tO {w}, and {1)',v"} by {w, 1)'} and {v",v3}. 
It is not hard to see that the above procedure applied repeatedly to any kemel will 

result in a clean kemel after a finite number of  steps (and so, since in each step we 

increase the number o f  chains, after no more than 3k steps). Furthermore, an elementary 

analysis of  Cases 1-5 shows that if K is the kemel o f  a d-uniform complex hypergraph, 

9(K) is such a kemel as well (since the verification of  this fact is easy but neither very 
short nor especially exciting we decide to omit details). Hence the number of  vertices 

and chains in any kemel is bounded from above by the number of  vertices and chains 

in some clean kernel, and Claim 2 follows. [] 

If  a kernel is clean one can simplify its structure even further. Thus, in a clean 

kernel K, replace every component of  K -  by a single vertex and join vertices v and w 

by as many edges as was the number of  chains connecting components corresponding 
to v and w in K. In such a way we obtain from K a 3-regular multigraph which may 

contain loops and multiple edges. We shall consider vertices of  this cubic multigraph 

to be unlabelled and call it the kernel pattern of  a hypergraph. 

4. Expanding kernel patterns 

In this section we make a crucial step in the proof o f  Theorems 1 and 2: for a given 
3-regular unlabelled multigraph G with 2k vertices we compute the number ca(m, G) 
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of clean d-uniform complex hypergraphs H with the vertex set [m] = {1 . . . . .  m} and 
the kernel pattern G. 

Thus, in this sequel G is an unlabelled 3-regular graph on 2k vertices with 21 loops, 
22 double edges and 23 triple edges, whose automorphism group has tr elements. We 
define the compensation factor of G setting 

#(G) = 2"~'+~26"~3a. (2) 

(Note that, because we defined the kernel pattern as an unlabelled graph, #(G) is 
slightly different from the compensation factor studied in [6].) 

Lemma 3. Let d~>2, m = l ( d -  1 ) -  k and 1 <~k = o ( v ~ )  and G be an unlabelled 
cubic 9raph on 2k vertices. Then there exists 

1 + O(k2/m) m! l 3k-I (d - 1) 2k 
va(m, G) - 

#(G) (3k - 1)! [(d - 2)!] l 

smooth d-uniform hypergraphs 121 with the vertex set [m] = { 1 . . . .  , m}, whose kernel 
patterns are isomorphic to G. 

Remark. Throughout this note error term does not reflect the dependence on d which 
is always treated as a constant. 

P r o o f  of Lemma 3. We first consider the case when d >I- 3. Let us recall that then there 
are two types of vertices in a kernel pattern: some of them are obtained by contracting 
3-stars while the others replace isolated hyperedges. Let us suppose that the kernel 
contains i 3-stars. Thus, to reconstruct the kernel from its pattern, we must choose 
vertices of G which will become centres of 3-stars in one of (2k) possible ways, label 
them ((m)i possibilities) and pick hyperedges of the 3-stars in one of 

m - i  ~ 1 ( d _ l ) ( m - i - ( d -  ( m  - ( 3 i - 1 ) ( d - 1 ) )  
6 -7 d -  1 1 ) / . . .  d - 1  

i 

1 (m - i ) !  
z 

6 / [(d - 1)!]3i[m - i - 3i(d - 1)]! 

ways. Finally, in each edge we choose a place when we attach a chain, which gives 
an additional factor (d - 1 )3i. Now choose vertices of 2k - i isolated hyperedges (there 
are 

1 ( m - i - 3 i ( d - 1 ) )  ( m - i - 3 i ( d - 1 ) - ( 2 k - i - 1 ) d )  
62k-i d "" d 

1 [ m - i - 3 i ( d - 1 ) ] !  
6 2k-i (d!)2k-i[m q- 2i - 2d(k  - i)]! 

ways to do so) and pick up the point of putting chains between them (we have (d) 2k-i 
possibilities). Finally, we must decide how to put chains in our construction. If  G is 
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just a graph then it is enough to order already chosen ends of chains in every 3-stars 
and isolated hyperedges, which can clearly be done on 62k ways, but in the case of 
multigraphs this number decreases by a factor of 2~12a26 a3. 

After recovering the kernel we must expand it to H, i.e. replace chains by the 
remaining (m + 2i - 2d (k  - i ) )  vertices of H, which correspond to l - 2(k + i) hy- 
peredges. Thus, order all remaining vertices, split them into 3k nonempty paths in one 
of (t-2{k+i)-l) ways, and, since in each hyperedge of a proper path vertices of degree \ 3k-1  / 
one are not ordered divide the product by [ ( d -  2)!] t-2k+l. Finally, replace chains of 
the kernel by the proper paths obtained in this way. 

In order to conclude our argument, it is enough to observe that each hypergraph 
whose kernel pattern is G appears as a result of our 'expanding' procedure precisely 
a times. Thus, we arrive at the following formula for vd(m, G): 

2k / 2 k \  m! 1 (m - i)l(d - 1) 3i 
vd(m, G) = i~o ~ i ) (m ~-- i)! 6 i [ ( d -  1 ) ! ] 3 i [ m - i -  3i(d - 1)]! 

[m - i - 3 i (d  - 1)]! [d(d - l )(d - 2 ) ]  2 k - i  62k 

62k-i(d!)2k-i[m + 2i -- 2d (k  - i)]! 22~2a26a3a 

x [ m + 2 i _ 2 d ( k _ i ) ] ! ( l - 2 ( k + i ) - l )  1 
3k - 1 [(d - 2)!] t-2(k+i) 

_ rn, ~ _ ] ( 2 k ) [ d ( d - 1 ) ( d - 2 ) ]  2k-i ( l - 2 ( k + i ) - l )  
# ( G ) i = o \  t / (d .T--~--S-[ ( -d72-)~i )  3k - 1 

l + O ( k 2 / l )  m! ( I ) 2 i = ~ 0 ( 2 k  ) 
p(G) [ ( d - 2 ) ! ]  t 3 k - 1  _ i ( d - 2 )  2k-i 

1 + O ( k 2 / l )  m! l 3k-1 (d - 1)  2k 

/~(G) ( 3 k -  1)! [ ( d -  2)!] t " 

Calculations in the case d = 2 are much simpler. We must choose labels for 2k vertices 
of degree three in the kemel pattern, divide the rest of vertices into 3k groups each of 
at least two vertices, and put them in place of paths of length three joining vertices of 
degree three in the kernel pattem. Thus, 

v2(m, G) = (m - - 2 k ) !  22,+22623 3 1 ~ = /~(G) (3k - 1)! [] 

The next natural step is to expand a smooth hypergraph H to a complex hypergraph 
whose core is isomorphic to /~ .  
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L e m m a  4. Let  d>>.2, r = s(d - 1) - k and 1 ~<k = o(r  1/3) and G be an unlabelled 

cubic 9raph on 2k vertices. Then 

ca(r,G) = ( l  +O(W~3r  ) )  x / ~  ( d - l )  k/2+l ~ ( c )  [ ( 2 - - ~ 1 ~  

1 [ e2_ d ]r/(d-1) 
rr+(3k - 1 )/2 

X 23k12F(3k/2) k(d - 2)tO 

clean d-uniform complex hyperyraphs on the vertex set [r] have the kernel pattern 
isomorphic to G. 

Proof .  Our p roof  will follow from Lemma 3 and the following combinatorial  fact, 

shown by Selivanov [13], which generalized the wel l -known Cay ley ' s  formula for the 

number  o f  rooted forests. 

L e m m a  5. Let  fr, m denote the number o f  all d-uniform forests on the vertex set [r], 

which have precisely m components and are such that vertices 1,2 . . . .  , m, belon9 to 

different components. Furthermore, let t be the number o f  hyperedyes in each such 

forests, so we have r = t(d - 1) + m. Then 

m(r -- m)!r t-1 
f r ,  m t ! [ ( d -  1)!] t 

P r o o f  o f  L e m m a  4. From Lemmas  3 and 5 we get 

¢d(r,G) -~ ~ ( r ~ v d ( m , G ) f r ,  m 
m=2kd+3k(d- 1 ) \ m  / 

r_£_ r! 1 q-O(k2/ l )  m! l 3k-I ( d -  1) 2k 

= ~-£ m l @  - m=2ka+3k(a-1) .t -- m)! p ( G )  (3k - 1)! [(d - 2)!]  t 

m(r - m)!r s - l - I  
x 

(s - l ) ! [ (d  - 1)!1 s - l  

r! (d - 1)2k 1 

/~(G) [(d - 2)!]  s (3k - 1)! 

r.5_ m 13k-lr s-I-1 

m=2ka+3k(a ~ - 1 ) (s --  l)!(----d --- 1 )~-l ( 1 + O(k 2/ l ) )  x 

r! ( d -  1) 2k 1 

~(G) [(a - 2)!]~ (3k - 1)! 

x k 13k-l[l(d - 1) - k][s(d - 1) - k] s- l-1 

l=[(5kd+Zk)/(d-1)] ( S  - -  l ) ! (d  - 1)s-t 



M. Karohski, T. LuczaklDiscrete Mathematics 171 (1997) 153-167 161 

×(1 + O(k2/l)) 

r! ( d -  1) 2k 1 

#(G)  [(d - 2)!] s (3k - 1)! 

13kss-l-1 ( 
× __ ~7 7 ~.v exp 

l= [(5kd+2k )/(d- l )] s(d 1) + 0 + 

Let 

S =  

r! ( d -  1) 2k e -k/(d-1) 

/fiG) [(d - 2)!] ~ (3k - 1)! 

× k 13ks s -  I-  l 

1=[(5kd+Zk)/(d-1)] ( S -  l)! 
- -  (1  + O(k l / s  + k2 / l ) )  . 

k 13kss_l_ 1 

l=[(5kd+2k)/(d-1)] (s -- l)! 
- - ( 1  + O(kl/s + k2/l)) 

Note that from Stirling's formula we get 

( s - l ) !  

ss--I - 1 sS--I - I eS-I 

- -  --(1 + O ( 1 / ( s -  l ) ) x / ~ ( s -  I) s-l+U2 

t 
/s_l e s-I s 

= ( l + O ( 1 / ( s - l ) ) ) s  2 ~ _ i )  

Thus 

1 { l 2 l 3 
- 

s ~  exp . + O ( ( s  ~ l) 2 ) )  

( 12 (~  k2 1 3 ) )  
e* k 13k exp - + O + + - -  . 

S -  S~z=[(Skd+2k)/(d--l)7 ~S 7 (S l) 2 

One can easily check that the main contribution to the above sum comes from the 
terms l for which l ~ 3x/T~ and thus the error term is, in fact, equal to O(x/kv/kv/~). 
Moreover, 

k 13%-12/2*(1 + O( kx/~)) 
l= [(5kd+2k )/(d- 1)] 

fo <3 = ( 1  + O ( k v / ~ ) )  x3ke-x/ZSdx+O(l) 

= ( 1 +  

= ( l +  
3 s 3k/2(3k-  1)! 
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2 3 k -  1 
since F(3k)  = ~ F ( 3 k / 2 ) I ' ( ( 3 k  + 1)/2). Hence, 

( S = 1 + O  --\2}s -~-3k-/2-) ' 

and thus, keeping in mind that r = s ( d  - 1 )  - k ,  we get 

( (k~)) r] (d-l)2' e-k/(a-l) es(s~3'12(3k-l), 
ca(r,G)= I+0 ~(G-) [(d - 2)!]' (-3-k-- ~-! s k,2} ~-3-k/5 

r! e(r+k)/(d-l) ( r + k ,~ 3k/2 

[(d - -  2)!] (r+k)/(d-l) ~7-k k,2(-d- ~J 

I + ° ( V ~ )  ( d -  1) ~2+1 1 

/~(G) [(d - 2)!] k/(a-1) 23k/2F(3k/2) 

X 

er/(a- 1 ) 
~3k/2-1 ~ 1 

[(d - 2)!]r/(a-1)" "" 

#(G)  [(d 2_- ~!]k-]-~-1) 23k/21~3k/2) 

f e 2 - d  q r / ( d - l )  x[~J r r+(3k-1) /2  . [] 

(3) 

5. Excluding unclean hypergraphs 

In the previous part of  the paper we dealt with clean hypergraphs, now we show 
that, if  k is small, there are only a few unclean hypergraphs with complexity k. 

Lemma 6. Let  d~>2, m = l ( d -  1 ) -  k and 1 ~<k = o(log m/ log  log m). Then, for  
every m which is large enough, not more than 

m! l 3k-1 

m 1/3 [(d - 2)!] 1 

smooth d-uniform complex hypergraphs 121 with the vertex set [m] and the excess k 
are not clean. 

Moreover, i f  r = s(d - 1) - k and 1 ~<k = o(log r / log  log r), then there are less 
than 

e2_a ]r/(d-1)rr+(3k-1)/2 
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unclean d-uniform complex hyperoraphs with the vertex set [r] and s hyperedges, 
provided r is laroe enough. 

Proof. In order to verify the above statement we must just repeat arguments from the 
previous section. Let K be a kernel of some unclean d-uniform graph with a vertices 
and b links. Since K is a kernel of an unclean hypergraph, from Claim 2 we know 
that a ~ 6kd and b ~< 3k - 1. Thus, the number of smooth complex d-uniform graphs 

with ker(/-}) isomorphic to K can be crudely bounded from above by 

m, ( l + b l ) ( 6 k d )  b m°'°lm[l b-a 
( m - a ) !  (m-a ) [  b - 1  [(dS2~.]l_a_k<~ [ ( d _ 2 ) ! ]  l , (4) 

where here and below we claim that all inequalities holds only for values m, l, r and s 
which are large enough. 

Now let us count the number cd(r,K) of all d-uniform hypergraphs which have 
the kemel isomorphic to K. Similarly, as in the proof of Lemma 4, (4) implies that 
cd(r,K) is bounded from above by 

m~=a ( r ) m°'°lm'lb-I m(r - m)'r s-l-I 
cd(r,K) <~ m ~7-2S~.-.-.-~ (s---ly[(-d----1).~7] s-t 

rV r lb-O.98ss-l-1 

~< [(d-'2)!]sm~__a (7----~.v " 

Repeating the argument which led us to (3) and using the fact that r = s ( d  - 1 )  - k ,  

we conclude that 

( ~ )  I e2-d q r/(d-1) (3k)!r, e s 0.5b-0.49 [(d 2),J rr+O'5b-0"98 
c~(r,X) <. [ ( 2 7 ~ . , 1 ~  s - ~< - -  

[ e2-d ]r/(d-1)rr+(3k-1)/2-0"47 (5) 
~< /(d - 2)!J 

To complete the proof we must estimate the number of nonisomorphic candidates 
for kernels of unclean complex d-uniform hypergraphs of complexity k. Since they 
have at most 6dk vertices, and thus not more than 6dk + k hyperedges of size d, there 
are not more than 

(6dk)  6dk+k ~<(17k) 7d2k 

ways of choosing them. Furthermore, there are not more than 

(36k2d 2)3k- 1 ~< 50 000k6kd 6k 

possibilities of placing at most 3 k -  1 chains which could appear in the kernel. But if 
k = o(log n/log log n) then clearly 

50 000d6k(17k) 7dzk +6k ~ n °m 

so the assertion follows from (4) and (5). [] 
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6. Counting complex hypergraphs 

From the previous sections we know that when the excess is small compared to 
the size of the hypergraph, the contribution to the number of complex d-uniform hy- 
pergraphs which comes from unclean hypergraphs is negligible. Furthermore, we have 
estimated the number of clean uniform hypergraphs with a given kernel pattern. Thus, 
to count hypergraphs in a subfamily of complex hypergraphs, we need only to know 
the weighted sum of kernel patterns of members of the family. The following lemma 
provides its value for families of all complex hypergraphs and of all connected hyper- 
graphs with excess k. 

Lemma 7. Let ~l[2k be the family of all unlabelled cubic graphs on 2k vertices, and 
let ~2k be the subfamily of  q12k which consists of all connected graphs of  this kind. 
Then 

1 (6k)! 1 'k-" (6) 
6~2k #(G) (3k)! (2k)! 25k32k 

I 

and 

G~2k #(G) -- c~k (k - 1)!, (7) 

where weights #(G) are defined as in (2) and coefficients ~k are determined by (1). 

Proof. Let V1 . . . .  V2k be disjoint sets, each containing three distinguishable points. Con- 
sider the family J// of all (6k)!/(3k)! 23k possible perfect matchings of the set V = 
[-J~l F/. Furthermore, for every matching M E ~(  let G(M) be a multigraph obtained 
from M by contracting all sets F/, i.e. G is labelled graph with the vertex set [2k] 
such that the vertices i,j, 1 <~i<~j<~2k, of G(M) are joined by the same number of 
edges as the number of edges of M between Vi and Vj. We claim that in the family 
{G(M) : M C Jg} each labelled multigraph G appears precisely 62k-~32 -'z'-'~2 times, 
where 21, 22 and 23 denote the number of loops, double and triple edges of G, respec- 
tively. Indeed, for a given matching M E Jr' we can modify M by 'switching' vertices 
in sets /"1 . . . . .  V2k in such a way that G(M) remains unchanged. Thus, if G is a graph 
without loops, one matching M gives (3!)2k other matchings M ~ with G(M) = G(M'). 
When G is a multigraph, this number drops down by a factor of (2!)'q+'h(3!) ~3 because 
some switches result in the same matchings. Now to complete the proof of (6) it is 
enough to observe that from each unlabelled graph G on 2k vertices can be labelled 
in precisely (2k)!/a ways, where a is the number of elements in the automorphism 
group of G. 

In order to show the second equation note that if we choose r much larger than k 
then Lemmas 4 and 6 imply that 
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On the other hand the value of c2(r,k) is given in Wright's Theorem 1. Since we can 
make an error term as small as we wish by picking r large enough (7) follows. [] 

Remark. It is not hard to show that when k is large the contribution to the first 
sum coming from nonconnected multigraphs is negligible, i.e. the two sums must be 
asymptotically equal. This provides yet another proof for the fact which has already 
been observed independently by several authors (see [6, p. 262]) 

lim ~k = lim ( 6 k ) !  1 _ 1 
k ~  k ~  (3k)!(2k)!(k - 1)! 24k33k 2n 

Now from Lemmas 3, 4, 6 and 7 and Stirling's formula we can easily obtain the 
numbers of complex d-uniform hypergraphs with a small excess. 

T h e o r e m  8. Let d>~2 and 1 ~<k = o(log m/log log m). Then the number of  smooth 

complex d-uniform hypergraphs with m vertices and excess k is given by 

( ( ~ / k ~ ) )  x / ~  (6k), 
ffd(m,k) = 1 + 0 (d - 1)k-125k32k (3k)!(2k)!(3k - 1)! 

1 [ e l _  a ]rn/(d--l) 
mm+ 3k- 1/2 

x [(d - 2)!]k/(a-l) L(d - 2)!j 

while for the number of  connected smooth d-uniform hypergraphs with m vertices and 
excess k we have 

( ( V ~ ) )  x/~ak 3k ( k - l ) ,  
vd(m,k) = 1 + 0 (c i~- l f i  --1 2 k (-3k--- ~ !  

1 [ ~ l - d  ]m/(d-1)mm+3k_,/2 
x [(d - 2)!]/'/(a-l) L(d - 2)! 

where ak is defined as & (1). 

In particular, if  k = o(log m~ log log m) but k ~ cx~ then 

~a(m,k) = (1 + O(1/k))vd(m,k) 

=(l+ \VmJJV  -1) 

x [ 18(d- 1)[(dl- 2)!],/(d_1) ] k r [ (d __ ~)!.jel-d "lm/(d--1) mm+3k -- 1/2 . 
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Theorem 9. Let d>~2 and 1 ~<k = o(log r / log log r). Then for the number o f  com- 
plex d-uniform hypergraphs with r vertices and excess k we have 

( ( W / ~ ) )  x / ~  (6k), l 
6a(r,k) = 1 + 0 F(3k/2) (2k)!(3k)! 213k/232k 

( d - l )  k/2+1 [ e 2-d ]r/(d-l)rr+(3k_l)/2 

x L(d - 21!] 

and counting connected d-uniform hypergraphs with r vertices and excess k gives 

cd(r,k) = 1 + 0  ~ ( k - l ) !  

( d -  1) k/2+l [ e2-d ]r/(d-1)rr+(3k_l)/2 

X [ ( d _ - - 2 ~ l )  L(d - 2)!J 
where o~k is defined as in (1). 

In particular, i f  k = o(log r~ log log r) but k --* o~ then 

Ea(r,k) = (1 + O(1/k))ea(r,k) = 1 + 0 V 41t \ lZkJ  

F e2-d qr/(d-1) ( d -  1) k/2+l | | rr+(3k_l)/2 
x [ ( ~ - - - ~ , )  L ~ J  

One may wonder whether Theorems 8 and 9 remain valid also for larger values of 
k. Clearly, the only problem is the elimination of unclean hypergraphs: the estimate 
for the number of clean hypergraphs holds as far as k = O(v~)  and k = o(rl/3). It 
is not very hard to replace the assumption k = o(log r/log log r)  by k = o(log r). 
Indeed, one can estimate ca(r,K) in the proof of Lemma 6 more carefully, and show 
that if kernels K and K ~ has, respectively, b and b t chains, where b-%< b ~ ~< 3k, then 

ca(r,K) = O((6d)6ak(3k ) b'-b Cd(r, Kt)r(b-b')/2) , 

i.e. when the number of chains drops by one ea(K,r) decreases roughly by v~. On 
the other hand from our 'algorithmic' proof of Claim 2 it follows that the number 
of candidates for kernels with b chains differs from the number of possible kernels 
with b' chains by a factor which is a polynomial of k whose degree grows linearly 
with b - b'. Hence, if k = o(log r), one can prove that the contribution coming from 
unclean hypergraphs is negligible and the assertion follows. 

Nonetheless, we believe that estimates given in Theorems 8 and 9 are valid whenever 
k = o(v/-m) and k = o(rl/3). However, even i l k  = o(m ~) or k --- o(r ~) for some e > 0, 
the proof would require considerably more work, since counting unclean hypergraphs 
one must control factors of order d k. Thus, probably one should rather look for a 
general argument, similar to that of Bender et al. [2], which could capture the behaviour 
of va(m,k) and ca(r,k) in the whole range of k. 
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