253 research outputs found

    The Importance of Host Plant Limitation for Caterpillars of an Arctiid Moth (Platyprepia Virginalis) Varies Spatially

    Get PDF
    Spatial dynamic theories such as source–sink models frequently describe habitat-specific demographies, yet there are surprisingly few field studies that have examined how and why interacting species vary in their dynamics across multiple habitat types. We studied the spatial pattern of interaction between a chewing herbivore and its primary larval host plant in two habitat types. We found that the interaction between an arctiid caterpillar (Platyprepia virginalis) and its host (Lupinus arboreus) differed in wet vs. upland dry habitats, as did yearly population dynamics for the caterpillar. In upland sites, there was a strong positive relationship between lupine cover and the abundance of caterpillars although this relationship was not apparent in wet sites. Additionally, in wet sites, caterpillar populations were larger and less variable across years. Caterpillars appeared to exhibit source–sink dynamics, with the time-averaged finite growth rate λ \u3e 1 in wet sites (sources), λ \u3c 1 in upland dry sites (sinks), and predominant source-to-sink movement of late-instar caterpillars. Populations in upland dry sites also went locally extinct in years of low regional abundance. Emigration from wet sites could potentially explain the lack of coupling of herbivore and host plant dynamics in these sites. These results indicate that movement and other factors affecting demography are habitat-specific and have important implications for trophic control. Acknowledging such complexity makes simple models of trophic control seem overly general but may allow us to formulate more broadly applicable ecological models

    Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus)

    Get PDF
    Animals often show reduced reproductive success in urban compared to adjacent natural areas. The lower availability and quality of natural food in cities is suggested as one key limiting factor. However, only few studies have provided conclusive support by simultaneously assessing food availability, diet and fitness. We consolidate this evidence by taking a holistic approach, comparing blue tits breeding in forest, suburban and urban areas. We (a) assessed arthropod availability, (b) investigated parental provisioning behaviour, (c) inferred diet through stable isotope analysis, and (d) measured reproductive success. At the urban site, we found a significant reduction in caterpillar availability, the main food source of blue tits, and consequently urban tits fed their offspring with fewer caterpillars than forest and suburban birds. Stable isotope analysis confirmed that diet in the urban area was fundamentally different than in the other sites. Reproductive success was lower in both urban and suburban sites compared to the forest site, and was positively associated with volume of provisioned caterpillars. Our findings provide strong integrative evidence that urban blue tit nestlings are not receiving a suitable diet, and this may be an important limiting factor for urban populations of this and potentially many other species

    Characterization of co-blockers for simple perfect matchings in a convex geometric graph

    Full text link
    Consider the complete convex geometric graph on 2m2m vertices, CGG(2m)CGG(2m), i.e., the set of all boundary edges and diagonals of a planar convex 2m2m-gon PP. In [C. Keller and M. Perles, On the Smallest Sets Blocking Simple Perfect Matchings in a Convex Geometric Graph], the smallest sets of edges that meet all the simple perfect matchings (SPMs) in CGG(2m)CGG(2m) (called "blockers") are characterized, and it is shown that all these sets are caterpillar graphs with a special structure, and that their total number is m⋅2m−1m \cdot 2^{m-1}. In this paper we characterize the co-blockers for SPMs in CGG(2m)CGG(2m), that is, the smallest sets of edges that meet all the blockers. We show that the co-blockers are exactly those perfect matchings MM in CGG(2m)CGG(2m) where all edges are of odd order, and two edges of MM that emanate from two adjacent vertices of PP never cross. In particular, while the number of SPMs and the number of blockers grow exponentially with mm, the number of co-blockers grows super-exponentially.Comment: 8 pages, 4 figure

    Variation in herbivory by Yponomeuta mahalebella on its only host plant Prunus mahaleb along an elevational gradient

    Get PDF
    1. The effect of natural variation in abiotic conditions on the herbivory interaction between Prunus mahaleb (Rosaceae) and its monophagous folivore, larvae of Yponomeuta mahalebella (Lepidoptera, Yponomeutidae), was analysed for 2 consecutive years along an elevational gradient in Sierra de Cazorla, south-east Spain. 2. There was a negative correlation between site elevation and mean population herbivory level measured at the end of the growing period of Y. mahalebella. Mortality during larval development was higher at higher elevation sites, and mean adult body mass was higher in lower elevation populations. 3. Variation in temperatures recorded during the larval growth period at different altitudes was the only study factor related to abundance of Y. mahalebella larvae, neither differences in parasitisation rates nor plant features covaried significantly with herbivore abundance. 4. These results support the existence of geographical variation in plant-animal interactions in relation to environmental heterogeneity.Peer Reviewe

    Cardenolide, Potassium, and Pyrethroid Insecticide Combinations Reduce Growth and Survival of Monarch Butterfly Caterpillars (Lepidoptera: Nymphalidae)

    Get PDF
    The monarch butterfly, Danaus plexippus L., has evolved to be insensitive to milkweed cardenolides via genetic modifications of Na+/K+-ATPase. There is concern for insecticide exposures near agriculture, with little information on monarch caterpillar toxicology. It is unclear how cardenolide insensitivity may affect the sensitivity of monarch caterpillars to pyrethroid insecticides. Additionally, potassium fertilizers may affect monarch caterpillar physiology and cardenolide sequestration. Here, we investigated the growth, survival, and development of caterpillars exposed to the cardenolide ouabain, bifenthrin, and potassium chloride (KCl) alone and in combination. Caterpillars were either exposed to (1) ouabain from third- to fifth-instar stage, (2) KCl at fifth-instar stage, (3) KCl and bifenthrin at fifth-instar stage, or (4) combinations of ouabain at third-instar stage + KCl + bifenthrin at fifth-instar stage. Caterpillar weight, diet consumption, frass, and survival were recorded for the duration of the experiments. It was observed that 1–3 mg ouabain/g diet increased body weight and diet consumption, whereas 50 mg KCl/g diet decreased body weight and diet consumption. Caterpillars feeding on KCl and treated with 0.2 μg/μl bifenthrin consumed significantly less diet compared to individuals provided untreated diet. However, there was no effect on survival or body weight. Combinations of KCl + ouabain did not significantly affect caterpillar survival or body weight following treatment with 0.1 μg/μl bifenthrin. At the concentrations tested, there were no effects observed for bifenthrin sensitivity with increasing cardenolide or KCl concentrations. Further studies are warranted to understand how milkweed-specific cardenolides, at increasing concentrations, and agrochemical inputs can affect monarch caterpillar physiology near agricultural landscapes
    • …
    corecore