734 research outputs found

    Asymptotic behavior of age-structured and delayed Lotka-Volterra models

    Full text link
    In this work we investigate some asymptotic properties of an age-structured Lotka-Volterra model, where a specific choice of the functional parameters allows us to formulate it as a delayed problem, for which we prove the existence of a unique coexistence equilibrium and characterize the existence of a periodic solution. We also exhibit a Lyapunov functional that enables us to reduce the attractive set to either the nontrivial equilibrium or to a periodic solution. We then prove the asymptotic stability of the nontrivial equilibrium where, depending on the existence of the periodic trajectory, we make explicit the basin of attraction of the equilibrium. Finally, we prove that these results can be extended to the initial PDE problem.Comment: 29 page

    Modified Riccati technique for half-linear differential equations with delay

    Get PDF
    We study the half-linear differential equation (r(t)Φ(x′(t)))′+c(t)Φ(x(τ(t)))=0,Φ(x):=∣x∣p−2x, p>1. (r(t)\Phi(x'(t)))'+c(t)\Phi(x(\tau(t)))=0,\quad \Phi(x):=|x|^{p-2}x,\ p>1. We formulate new oscillation criteria for this equation by comparing it with a certain ordinary linear or half-linear differential equation. Our proofs are based on a suitable estimate for the solution of the equation studied and on the modified Riccati technique, which, in ordinary case, appeared to be an effective replacement of the well known linear transformation formula

    Modelling and analysis of dynamics of viral infection of cells and of interferon resistance

    Get PDF
    AbstractInterferons are active biomolecules, which help fight viral infections by spreading from infected to uninfected cells and activate effector molecules, which confer resistance from the virus on cells. We propose a new model of dynamics of viral infection, including endocytosis, cell death, production of interferon and development of resistance. The novel element is a specific biologically justified mechanism of interferon action, which results in dynamics different from other infection models. The model reflects conditions prevailing in liquid cultures (ideal mixing), and the absence of cells or virus influx from outside. The basic model is a nonlinear system of five ordinary differential equations. For this variant, it is possible to characterise global behaviour, using a conservation law. Analytic results are supplemented by computational studies. The second variant of the model includes age-of-infection structure of infected cells, which is described by a transport-type partial differential equation for infected cells. The conclusions are: (i) If virus mortality is included, the virus becomes eventually extinct and subpopulations of uninfected and resistant cells are established. (ii) If virus mortality is not included, the dynamics may lead to extinction of uninfected cells. (iii) Switching off the interferon defense results in a decrease of the sum total of uninfected and resistant cells. (iv) Infection-age structure of infected cells may result in stabilisation or destabilisation of the system, depending on detailed assumptions. Our work seems to constitute the first comprehensive mathematical analysis of the cell-virus-interferon system based on biologically plausible hypotheses

    Natural preconditioners for saddle point systems

    Get PDF
    The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or discrete setting, so saddle point systems arising from discretization of partial differential equation problems such as those describing electromagnetic problems or incompressible flow lead to equations with this structure as does, for example, the widely used sequential quadratic programming approach to nonlinear optimization.\ud This article concerns iterative solution methods for these problems and in particular shows how the problem formulation leads to natural preconditioners which guarantee rapid convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness -- in terms of rapidity of convergence -- is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends

    Halanay type inequalities on time scales with applications

    Full text link
    This paper aims to introduce Halanay type inequalities on time scales. By means of these inequalities we derive new global stability conditions for nonlinear dynamic equations on time scales. Giving several examples we show that beside generalization and extension to q-difference case, our results also provide improvements for the existing theory regarding differential and difference inequalites, which are the most important particular cases of dynamic inequalities on time scales
    • …
    corecore