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Abstract. We study the half-linear differential equation

(r(t)Φ(x′(t)))′ + c(t)Φ(x(τ(t))) = 0, Φ(x) := |x|p−2x, p > 1.

We formulate new oscillation criteria for this equation by comparing it with a certain
ordinary linear or half-linear differential equation. Our proofs are based on a suitable
estimate for the solution of the equation studied and on the modified Riccati technique,
which, in ordinary case, appeared to be an effective replacement of the well known
linear transformation formula.
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1 Introduction

In this paper we study the half-linear differential equation with delay in the form

(r(t)Φ(x′(t)))′ + c(t)Φ(x(τ(t))) = 0, Φ(x) := |x|p−2x, p > 1, (1.1)

where r, c, τ are continuous functions such that r(t) > 0, c(t) ≥ 0 for large t, τ(t) ≤ t,
limt→∞ τ(t) = ∞. Through the paper we denote by q the conjugate number to p, i.e., q = p

p−1 .
Note that the name “half-linear equation” arises from the fact that a constant multiple

of every solution of (1.1) is also a solution of this equation, but the sum of two solutions in
general fails to be a solution of (1.1). Note also, that (1.1) is a natural generalization of the
half-linear ordinary differential equation

(r(t)Φ(x′(t)))′ + c(t)Φ(x(t)) = 0. (1.2)

Equation (1.1) and its generalizations (including neutral equations, dynamic equations on
timescale, higher order equations) attracted broad attention in the last years (see for example
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[8, 11, 13, 15, 16]) and one of the crucial problems is to find conditions which ensure that all
nonsingular solutions of this equation have infinitely many zeros. This is motivation for the
following definitions.

Definition 1.1. Under the solution of (1.1) we understand every differentiable function x(t)
which does not identically equal zero eventually, such that r(t)Φ(x′(t)) is differentiable and
(1.1) holds for large t.

Definition 1.2. The solution of equation (1.1) is said to be oscillatory if it has infinitely many
zeros tending to infinity. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.
In the opposite case, i.e., if there exists an eventually positive solution of (1.1), equation (1.1)
is said to be nonoscillatory. A solution of (1.1) is called weakly oscillatory if it is either oscillatory
or the derivative of this solution is oscillatory.

It is well known that the behavior of delay equations is very different from the behavior
of ordinary differential equations. Among others, the Sturm theorem on interlacing property
of zeros fails and oscillatory solutions may coexist with nonoscillatory solutions. Despite this
fact, many results and methods (including the methods which allow to detect oscillation of
all solutions) can be extended from the theory of ordinary differential equations also to the
theory of delay differential equations.

One of the techniques in oscillation theory of (1.1) which produces reasonably sharp results
is the transformation to the first order Riccati type equation. This method is in the qualitative
theory of the linear ordinary differential equation

(r(t)x′)′ + c(t)x = 0 (1.3)

(which is a special case of (1.1) for p = 2) often combined with suitable transformation tech-
nique – more precisely, the transformation

x = f (t)y

which transforms (1.3) into (
r f 2y′

)′
+ f

[
(r f ′)′ + c f

]
y = 0.

It is well known that the method of Riccati equation has a direct extension also to the half-
linear case, but the same is not true for the transformation method. Fortunately, in the last
years a new method appeared, which seems to be convenient half-linear substitution for the
linear transformation theory – method of modified Riccati equation, introduced and elabo-
rated in [2, 3, 4]. For examples of applications of modified Riccati technique which allowed
to obtain half-linear versions of the results proved originally for the linear equation using
transformation technique see [6] and [7].

One of the possible extensions of the modified Riccati equation method is the application
of this method to the (undelayed) equation which arises from (1.1) using results of the paper
[11]. More precisely, under certain additional assumptions we can detect oscillation of (1.1)
by oscillation of a certain ordinary differential equation, for which the method of modified
Riccati equation is well elaborated. In this paper we provide an alternative extension of the
modified Riccati equation method for (1.1), which does not need the intermediate step based
on conversion of equation (1.1) into an equation of the type (1.2) and thus we can drop the
assumptions of paper [11].
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The paper is organized as follows. In the next section we introduce the modified Riccati
equation for equation (1.1) and in the third section we use these results to obtain explicit com-
parison theorems which compare (1.1) with a certain (linear or half-linear) ordinary differential
equation.

2 Riccati technique and modified Riccati technique

The main idea of the direct modified Riccati technique for half-linear delay differential equa-
tion lies in the following steps:

(i) transformation of the positive solution of the second order differential equation (1.1) into
a solution of a certain first order equation (equation (2.2) below),

(ii) transformation of the first order equation from the previous step into a certain first order
inequality (inequality (2.6) below),

(iii) employing quadratic (or in general a power-like) estimate for the nonlinear term in the
inequality obtained in the previous step (see, e.g., Lemma 2.3 below),

(iv) transformation of the inequality obtained in previous steps into second order equation
(in order to compare (1.1) with a similar object).

First of all we utilize the well-known method of transformation into Riccati type equation,
see, e.g., [8]. Suppose that (1.1) is nonoscillatory and let x be a solution of (1.1) such that
x(t) 6= 0, x′(t) 6= 0. Then, by a direct computation, one can verify that the function

w(t) = r(t)
Φ(x′(t))

Φ(x(τ(t)))
(2.1)

satisfies the Riccati type equation

R[w](t) := w′(t) + c(t) + (p− 1)r1−q(t)τ′(t)
x′(τ(t))

x′(t)
|w(t)|q = 0. (2.2)

In the ordinary case τ(t) = t the solvability of (2.2) in the neighborhood of infinity is
sufficient for nonoscillation of (1.2), see the following lemma.

Lemma 2.1 ([1, Theorem 2.2.1]). The following statements are equivalent:

(i) Equation (1.2) is nonoscillatory.

(ii) Equation
w′(t) + c(t) + (p− 1)r1−q(t)|w(t)|q = 0

has a solution defined in a neighborhood of infinity.

(iii) Inequality
w′(t) + c(t) + (p− 1)r1−q(t)|w(t)|q ≤ 0

has a solution defined in a neighborhood of infinity.

In the following lemma we derive a modified Riccati type inequality. Note that to obtain
this inequality we need to eliminate the dependence on the quotient x′(τ(t))/x′(t) which
appears in (2.2). More precisely, we suppose that we have an a priori estimate for this term.
Note that under suitable conditions such an estimate exists, as shown in Lemma 2.6.
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Lemma 2.2. Let x be a solution of (1.1) such that x(t) 6= 0, x′(t) 6= 0 and let f be a positive function
satisfying

x′(τ(t))
x′(t)

≥ f (t). (2.3)

Let w be the solution of (2.2) given by (2.1) and h be a positive differentiable function. Define

G(t) = r(t)h(τ(t))Φ
(

h′(τ(t))
f (t)

)
(2.4)

and put
v(t) = hp(τ(t))w(t)− G(t). (2.5)

Then

v′(t) + C(t) + (p− 1)r1−q(t)τ′(t) f (t)h−q(τ(t))H(v(t), G(t)) ≤ hp(τ(t))R[w(t)] = 0, (2.6)

where

C(t) = h(τ(t))

[(
r(t)Φ

(
h′(τ(t))

f (t)

))′
+ c(t)Φ(h(τ(t)))

]
(2.7)

and
H(v, G) = |v + G|q − qΦ−1(G)v− |G|q. (2.8)

Proof. Differentiating the function v(t) and using w(t) = h−p(τ(t))(v(t) + G(t)) we get

v′(t) = php−1(τ(t))h′(τ(t))τ′(t)w(t) + hp(τ(t))w′(t)− G′(t)

= ph′(τ(t))τ′(t)h−1(τ(t))(v(t) + G(t)) + hp(τ(t))w′(t)− G′(t).

Then

hp(τ(t))R[w(t)] = hp(τ(t))
[

w′(t) + c(t) + (p− 1)r1−q(t)τ′(t)
x′(τ(t))

x′(t)
|w(t)|q

]
≥ v′(t)− ph′(τ(t))τ′(t)h−1(τ(t))(v(t) + G(t)) + G′(t) + hp(τ(t))c(t)

+ (p− 1)r1−q(t)τ′(t) f (t)h−q(τ(t))|(v(t) + G(t))|q

= v′(t) + C̃(t) + (p− 1)r1−q(t)τ′(t) f (t)h−q(τ(t))H(v(t), G(t)),

where

C̃(t) = hp(τ(t))c(t) + G′(t)− ph−1(τ(t))h′(τ(t))τ′(t)G(t)

+ (p− 1)r1−q(t)τ′(t) f (t)h−q(τ(t))|G(t)|q

− ph′(τ(t))τ′(t)h−1(τ(t))v + pr1−q(t)τ′(t) f (t)h−q(τ(t))Φ−1(G(t))v

= hp(τ(t))c(t) + G′(t)− pr(t)|h′(τ(t))|pτ′(t) f 1−p(t)

+ (p− 1)r(t)|h′(τ(t))|pτ′(t) f 1−p(t)

= hp(τ(t))c(t) + G′(t)− r(t)|h′(τ(t))|pτ′(t) f 1−p(t).

Since

G′(t) =
(

r(t)Φ
(

h′(τ(t))
f (t)

))′
h(τ(t)) + r(t)|h′(τ(t))|pτ′(t) f 1−p(t),

we have

C̃(t) = h(τ(t))

[(
r(t)Φ

(
h′(τ(t))

f (t)

))′
+ c(t)Φ(h(τ(t)))

]
and hence C̃(t) = C(t). Inequality (2.6) is proved.
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The previous lemma suggests a method how to obtain oscillation criteria for the delay half-
linear differential equation (1.1) by comparing it with a certain ordinary differential equation.
The crucial tools are estimate (2.3) and an appropriate estimate for a function H(v, G). Having
a suitable function f for which (2.3) holds and if H(v, G) is estimated by a function of the
form c1v2 or c2|v|q, then (2.6) relates the Riccati type equation (2.2) associated with (1.1) and
the Riccati type equation associated to a certain ordinary linear of half-linear equation with
the different power in nonlinearity than in (1.1).

Lemma 2.3 ([2, Lemma 5 and Lemma 6]). The function (2.8) has the following properties:

(i) H(v, G) ≥ 0 with the equality if and only if v = 0.

(ii) If p ≤ 2, then H(v, G) ≥ q
2 |G|q−2v2.

(iii) For every T > 0 there exists a constant K > 0 such that

H(v(t), G(t)) ≥ K|G(t)|v2(t)

for any t and v satisfying |v(t)/G(t)| ≤ T.

(iv) If lim inft→∞ |G(t)| > 0 and v(t)→ 0 for t→ ∞, then

H(v(t), G(t)) =
q(q− 1)

2
|G(t)|q−2v2(t)(1 + o(1)), as t→ ∞.

The next statement gives sufficient conditions for nonnegativity of the solutions to the
modified Riccati equation. The proof of this statement (in its special form) can be found in [3,
Corollary 1] and [4, Theorem 3.5].

Lemma 2.4. Suppose that A(t) ≥ 0 and either

lim sup
t→∞

|G(t)| < ∞ and
∫ ∞

B(t)dt = ∞

or
lim
t→∞
|G(t)| = ∞ and

∫ ∞
B(t)|G(t)|q−2 dt = ∞.

Then all proper solutions (i.e., solutions which exist in a neighborhood of infinity) of the equation

v′ + A(t) + B(t)H(v, G(t)) = 0

are nonnegative eventually.

A consequence of Lemma 2.4 applied to inequality (2.6) reads as follows.

Lemma 2.5. Let h be a positive continuously differentiable function such that h′(t) 6= 0 for large t and
C(t) ≥ 0 for large t. Moreover, let either

lim sup
t→∞

|G(t)| < ∞ (2.9)

and ∫ ∞ f (t)τ′(t)
rq−1(t)hq(τ(t))

dt = ∞, (2.10)
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or
lim
t→∞
|G(t)| = ∞ (2.11)

and ∫ ∞ Φ( f (t))τ′(t)
r(t)h2(τ(t))|h′(τ(t))|p−2 dt = ∞. (2.12)

Then all possible proper solutions (i.e., solutions which exist in a neighborhood of infinity) of (2.6) are
nonnegative eventually.

Proof. If v is a proper solution of (2.6), then there exists D(t) ≥ 0 such that v is a proper
solution of the equation

v′(t) + C(t) + D(t) + (p− 1)r1−q(t)τ′(t) f (t)h−q(τ(t))H(v(t), G(t)) = 0.

The nonnegativity of all proper solutions of this equation follows from Lemma 2.4 with
A(t) := C(t) + D(t) and B(t) := (p− 1)r1−q(t)τ′(t) f (t)h−q(τ(t)).

The following estimate is well known, see, e.g., [8].

Lemma 2.6. Let c(t) ≥ 0 and ∫ ∞
r1−q(t)dt = ∞. (2.13)

Then eventually positive monotone solutions of (1.1) satisfy

x′(τ(t))
x′(t)

≥ Φ−1
(

r(t)
r(τ(t))

)
(2.14)

eventually.

Proof. The proof essentially follows the first part of the proof of [8, Theorem 1]. From the fact
that x is an eventually positive solution it follows that r(t)Φ(x′(t)) is nonincreasing eventually.
Since Φ(·) is increasing and τ(t) ≤ t, we have

Φ−1(r(τ(t)))x′(τ(t)) ≥ Φ−1(r(t))x′(t).

Now (2.14) follows from the last inequality and from the fact that both r and x′ are even-
tually positive (the positivity of r is obvious, the eventual positivity of x′ is a well-known
consequence of (2.13), see the first part of [8, Theorem 1] for more details).

3 Oscillation criteria

Combining Lemma 2.2, the quadratic estimate (ii) from Lemma 2.3 and Lemma 2.6, we get
the following comparison theorem. Note that taking f (t) = Φ−1

(
r(t)

r(τ(t))

)
, the function G(t)

takes the form
G1(t) = r(τ(t))h(τ(t))Φ(h′(τ(t))). (3.1)

Theorem 3.1. Let p ≤ 2, c(t) ≥ 0, τ′(t) ≥ 0 and (2.13) holds. Let h be a positive differentiable
function and define

R1(t) = r(τ(t))
1

τ′(t)
h2(τ(t))|h′(τ(t))|p−2,

C1(t) = h(τ(t))
[(

r(τ(t))Φ(h′(τ(t)))
)′
+ c(t)Φ(h(τ(t)))

]
.

(3.2)
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If the ordinary linear differential equation

(R1(t)y′)′ +
p
2

C1(t)y = 0 (3.3)

is oscillatory, then equation (1.1) is oscillatory.

Proof. Suppose, by contradiction, that (3.3) is oscillatory and for some T > 0 there exists a
positive solution x(t) of (1.1) on [T, ∞). By Lemma 2.6, this solution satisfies the estimate
(2.14). From Lemma 2.2 using f (t) = Φ−1( r(t)

r(τ(t))

)
, w(t) defined by (2.1) and with G1 given by

(3.1) we see that the function v(t) = hp(τ(t))w(t)− G1(t) satisfies the inequality

v′(t) + C1(t) + (p− 1)r1−q(τ(t))τ′(t)h−q(τ(t))H(v(t), G1(t)) ≤ 0. (3.4)

Next, using estimate (ii) from Lemma 2.3 we get

v′(t) + C1(t) +
p
2

r1−q(τ(t))τ′(t)h−q(τ(t))|G1(t)|q−2v2(t) ≤ 0,

i.e.,

v′(t) + C1(t) +
p
2

v2(t)
R1(t)

≤ 0,

which is the Riccati inequality related to an equation which arises from (3.3) by multiplying
with constant factor 2/p. This means that (3.3) is nonoscillatory, thus the theorem is proved.

In the following theorem we use the estimate (iv) of Lemma 2.3 rather than (ii). The
advantage of this method is that the estimate is sharper and thus its aplication allows to
deduce sharper oscillation criteria with no restriction on p, but we have to ensure that v(t)
tends to 0.

Theorem 3.2. Let τ′(t) ≥ 0, c(t) ≥ 0 and (2.13) holds. Let h be a positive differentiable function and
C1(t), R1(t) be given by (3.2). Suppose that

C1(t) ≥ 0,
∫ ∞

R−1
1 (t)dt = ∞, lim inf

t→∞
G1(t) > 0

and
lim sup

t→∞
G1(t) < ∞ or lim

t→∞
G1(t) = ∞

hold. If the ordinary linear differential equation

(R1(t)y′)′ +
q− ε

2
C1(t)y = 0 (3.5)

is oscillatory for some ε > 0, then equation (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x(t) which satisfies x(t) > 0 on [T, ∞)

for some T > 0. We prove that (3.5) is nonoscillatory for every ε > 0.
By Lemma 2.2, taking f (t) = Φ−1( r(t)

r(τ(t))

)
(see Lemma 2.6) there is a solution v(t) of the

modified Riccati inequality (3.4).
All conditions of Lemma 2.5 are satified. Really, conditions (2.9), (2.11) are assumed

in the theorem (with G replaced by G1 function, which is just a special case of G) and
condition (2.12) is just another form of the assumption

∫ ∞ R−1
1 (t)dt = ∞. Further, (2.10)
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takes the form
∫ ∞ R−1

1 (t)|G1(t)|2−q dt = ∞ and thus it is a direct consequence of (2.12) and
0 < lim inft→∞ |G1(t)| ≤ lim supt→∞ |G1(t)| < ∞. Thus v(t) ≥ 0 eventually. Since (3.4)
together with the nonnegativity of C1 and H(v, G1) implies v′(t) ≤ 0, there exists a finite
nonnegative limit limt→∞ v(t).

We show that limt→∞ v(t) = 0. To achieve this, we integrate (3.4) from T1 to t (T1 ≥ T) and
since v(t) ≥ 0 we get

v(T1) ≥
∫ t

T1

C1(s)ds + (p− 1)
∫ t

T1

r1−q(τ(s))τ′(s)h−q(τ(s))H(v(s), G1(s))ds.

Both the integrals in the previous inequality are nonnegative and letting t→ ∞, we obtain∫ ∞
r1−q(τ(t))τ′(t)h−q(τ(t))H(v(t), G1(t))dt < ∞.

Conditions lim inft→∞ G1(t) > 0 and limt→∞ v(t) < ∞ imply that there exists a positive con-
stant M and T2 ≥ T1 such that

∣∣ v(t)
G1(t)

∣∣ < M for t ≥ T2. Hence, by Lemma 2.3 (iii), there exists
K > 0 such that

K|G1|q−2v2(t) ≤ H(v(t), G1(t)) for t ≥ T2.

Using the relation R1(t)|G1(t)|q−2 = rq−1(τ(t))hq(τ(t))
τ′(t) , the last inequality gives

K
v2(t)
R1(t)

≤ r1−q(τ(t))h−q(τ(t))τ′(t)H(v(t), G1(t)) for t ≥ T2.

Integrating this inequality from T3 to t, where T3 ≥ T2, and letting t→ ∞ we get

K
∫ ∞

T3

v2(t)
R1(t)

dt ≤
∫ ∞

T3

r1−q(τ(t))h−q(τ(t))τ′(t)H(v(t), G1(t))dt < ∞.

This inequality together with the assumption
∫ ∞ R−1

1 (t)dt = ∞ shows that limt→∞ v(t) = 0.
Let ε > 0. By the local estimate (iv) from Lemma 2.3, there exists T4 ≥ T3 such that

(q− ε)(q− 1)
2

|G1(t)|q−2v2(t) ≤ H(v(t), G1(t))

for t ≥ T4 and hence, using the relation between G1(t) and R1(t) and the obvious fact that
(p− 1)(q− 1) = 1 we have

q− ε

2
v2(t)
R1(t)

≤ (p− 1)r1−q(τ(t))τ′(t)h−q(τ(t))H(v(t), G1(t))

for t ≥ T4. This inequality and (3.4) imply that v(t) is a solution of the inequality

v′(t) + C1(t) +
q− ε

2
v2(t)
R1(t)

≤ 0

on [T4, ∞) which is the Riccati inequality associated with (3.5). Hence (3.5) is nonoscillatory.

The following theorem is a variant of Theorem 3.2. In contrast to Theorem 3.2, we do not
suppose (2.13) and thus the estimate from Lemma 2.6 is not available.
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Theorem 3.3. Let h be a positive differentiable function such that h′(t) 6= 0. Let f (t) > 0 be a positive
function and C, R and G be functions defined by (2.7),

R(t) =
r(t)
τ′(t)

h2(τ(t))|h′(τ(t))|p−2 1
Φ( f (t))

(3.6)

and (2.4), respectively. Suppose τ′(t) ≥ 0 and

lim inf
t→∞

G(t) > 0, (3.7)

C(t) ≥ 0, (3.8)∫ ∞
R−1(t)dt = ∞ (3.9)

and
either lim sup

t→∞
|G(t)| < ∞ or lim

t→∞
|G(t)| = ∞.

Let
(R(t)y′)′ +

q− ε

2
C(t)y = 0 (3.10)

be oscillatory for some ε > 0. Then every solution of (1.1) is either weakly oscillatory or in every
neighborhood of ∞ there exists t∗ such that

x′(τ(t∗))
x′(t∗) f (t∗)

< 1.

Proof. Suppose, by contradiction, that all the assumptions of the theorem are satisfied and that
there exists t0 such that (1.1) has a solution x(t) satisfying

x(t) > 0, x′(t) 6= 0,
x′(τ(t))
x′(t) f (t)

≥ 1

for t ∈ [t0, ∞). Let ε > 0. To prove the theorem is sufficient to show that the function v(t)
defined by (2.5) is a solution of

v′(t) + C(t) +
q− ε

2
v2(t)
R(t)

≤ 0, (3.11)

since the existence of a solution of this inequality in some neighborhood of ∞ shows that
(3.10) is nonoscillatory.

In notation of Lemma 2.2, the function v satisfies (2.6). It is easy to verify that

R−1(t) = |G(t)|q−2r1−q(t)τ′(t)h−q(τ(t)) f (t)

and since (2.12) is a rewritten form of (3.9) and (2.12) with

0 < lim inf
t→∞

|G(t)| ≤ lim sup
t→∞

|G(t)| < ∞

implies (2.10), the conditions of Lemma 2.5 are satisfied and there exists t1 > t0 such that
v(t) ≥ 0 on [t1, ∞). Since inequality (2.6) and nonnegativity of H implies v′(t) ≤ 0, there
exists a nonnegative finite limit limt→∞ v(t).
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We show that v(t)→ 0 as t→ ∞ and thus (iv) of Lemma 2.3 can be used. Integrating (2.6)
on [T, t] for T ≥ t2 we get

v(t)− v(T) +
∫ t

T
C(s)ds + (p− 1)

∫ t

T
r1−q(s)τ′(s) f (s)h−q(τ(s))H(v(s), G(s))ds ≤ 0.

Since v(t) ≥ 0, we have

v(T) ≥
∫ t

T
C(s)ds + (p− 1)

∫ t

T
r1−q(s)τ′(s) f (s)h−q(τ(s))H(v(s), G(s))ds

and hence ∫ ∞

T
r1−q(s)τ′(s) f (s)h−q(τ(s))H(v(s), G(s))ds < ∞.

As in the proof of Theorem 3.2, there exists t3 > t2 and K > 0 such that

K|G(t)|q−2v2(t) ≤ H(v(t), G(t)) for t ≥ t3

and hence

K
v2(t)
R(t)

≤ r1−q(t)τ′(t) f (t)h−q(τ(t))H(v(t), G(t)).

Integrating we get

K
∫ ∞

t3

v2(t)
R(t)

dt < ∞

and since (3.9) holds, we have v(t)→ 0 as t→ ∞.
As in the proof of Theorem 3.2, there exists t4 such that

(q− ε)(q− 1)
2

|G(t)|q−2v2(t) ≤ H(v(t), G(t))

and hence
q− ε

2
v2(t)
R(t)

≤ (p− 1)r1−q(t)τ′(t)h−q(τ(t)) f (t)H(v(t), G(t))

holds for t ≥ t4. Using this estimate in (2.6) we see that v(t) is on [t4, ∞) a solution of (3.11).
Thus, (3.10) is nonoscillatory and the theorem is proved.

The following theorem allows to detect oscillation of the equation from oscillation of half-
linear differential equation (rather than from linear equation). It is a direct delay variant of
[5, Theorem 3] (note that [5, Theorem 3] is itself a generalization of a power type comparison
result for half-linear equations [14, Theorem 1.1]).

Theorem 3.4. Let h be a positive differentiable function such that h′(t) > 0, let f (t) > 0 be a positive
continuous function and let C, R and G be defined by (2.7), (3.6) and (2.4), respectively. Suppose that
τ′(t) ≥ 0, (3.8) holds and either (2.9), (2.10) or (2.11), (2.12) hold. Finally, suppose that there exists
α > p such that the half-linear equation(

a(t)Φα(x′)
)′

+ b(t)Φα(x) = 0, (3.12)
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where

Φα(x) = |x|α−2x,

a(t) =
(

q
β

)1−α

r(t)
(
τ′(t)

)1−α f 1−p(t)h(q−β)(1−α)
(
τ(t)

)(
h′(τ(t))

)p−α,

b(t) =
(

h(τ(t))
)q(1−α)

[(
q
β

τ′(t)− 1
)

r(t)
(
h′(τ(t))

)p

Φ( f (t))
+ c(t)

(
h(τ(t))

)p
]

,

β =
α

α− 1
,

is oscillatory. Then every solution of (1.1) is either weakly oscillatory or in every neighborhood of ∞
there exists t∗ such that

x′(τ(t∗))
x′(t∗) f (t∗)

< 1.

Proof. Suppose, by contradiction, that there exists t0 such that (1.1) has a solution x(t) satisfy-
ing

x(t) > 0, x′(t) 6= 0,
x′(τ(t))
x′(t) f (t)

≥ 1

for t ∈ [t0, ∞). We show that (3.12) is nonoscillatory for arbitrary α > p.
By Lemma 2.2, the function v(t) defined by (2.5) satisfies (2.6). Using the definition of

H(v, G) we get from (2.6) the inequality (the dependence on t is suppressed for brevity)

v′ + C + (p− 1)r1−qτ′ f h−q(τ)|G|q
{∣∣∣ v

G
+ 1
∣∣∣q − q

v
G
− 1
}
≤ 0,

i.e.,

v′ + C + (p− 1)qr1−qτ′ f h−q(τ)|G|q
{

1
q

∣∣∣ v
G

+ 1
∣∣∣q − ( v

G
+ 1
)
+

1
p

}
≤ 0.

It follows from Lemma 2.5 that v(t) > 0 and since also G(t) > 0, we have by [5, Lemma 3] the
inequality

1
β

∣∣∣ v
G

+ 1
∣∣∣β − ( v

G
+ 1
)
+

1
α
≤ β− 1

q− 1

{
1
q

∣∣∣ v
G

+ 1
∣∣∣q − ( v

G
+ 1
)
+

1
p

}
.

Hence

v′ + C +
(p− 1)q(q− 1)

(β− 1)β
r1−qτ′ f h−q(τ)|G|q−β

{
|v + G|β − βΦβ(G)v− |G|β

}
≤ 0.

Next for some differentiable positive function F(t) which will be specified later denote v(t) +
G(t) = F(t)z(t). By a direct computation the previous inequality yields

F′z + Fz′ − G′ + C +
q(α− 1)

β
r1−qτ′ f h−q(τ)|G|q−βFβzβ

− q(α− 1)r1−qτ′ f h−q(τ)Φ−1(G)Fz +
q
β

r1−qτ′ f h−q(τ)|G|q ≤ 0.
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Using the definition of G (see (2.4)) we get

Fz′ +
(

F′ − q(α− 1)τ′
h′(τ)
h(τ)

F
)

z

+
q(α− 1)

β
r1−βτ′ f 1−(p−1)(q−β)h−β(τ)(h′(τ))(p−1)(q−β)Fβzβ

+
q
β

rτ′ f 1−p(h′(τ))p + C−
(

rΦ
(

h′(τ)
f

))′
h(τ)− r

(h′(τ))p

Φ( f )
≤ 0.

The particular choice F(t) =
(
h(τ(t))

)q(α−1) allows to eliminate the term linear in z and using
definition of C(t) (see (2.7)) we get

z′ +
q(α− 1)

β
r1−βτ′ f 1−(p−1)(q−β)hq−β(τ)

(
h′(τ)

)(p−1)(q−β)
zβ

+ h(τ)q(1−α)

[
q
β

rτ′ f 1−p(h′(t))p + c(t)hp(τ)− r
(h′(τ))p

Φ( f )

]
≤ 0.

Hence

z′ + (α− 1)

[(
q
β

)1−α

r(τ′)1−α f (1−α)[1−(p−1)(q−β)]h(q−β)(1−α)(τ)(h′(τ))(1−α)(p−1)(q−β)

]1−β

zβ

+ (h(τ))q(1−α)

[(
q
β

τ′ − 1
)

r(h′(τ))p

Φ( f )
+ c(t)hp(τ)

]
≤ 0.

Since (1− α)[1− (p− 1)(q− β)] = 1− p and (1− α)(p− 1)(q− β) = p− α, the above compu-
tation reveals that z solves the Riccati inequality associated to (3.12), hence (3.12) is nonoscil-
latory.

Example 3.5. An important example of equation which is used to examine the sharpness of
oscillation criteria is the Euler type equation which in the case of the second order delay
differential equation reads as(

Φ(x′(t))
)′
+

β

tp Φ
(
x(λt)

)
= 0, λ < 1. (3.13)

This equation is known to be oscillatory if

β >

(
p

p− 1

)p 1
λp−1 (3.14)

(see [10]). Note that in the case of ordinary differential equation (without delay) the oscillation
constant (3.14) is known to be a boundary between oscillation and nonoscillation of the equa-
tion. In the case of delay equation we do not have such a sharp borderline between oscillation
and nonoscillation, since oscillatory and nonoscillatory solutions may coexist. However, based
on the results of [10] (compare also worse oscillation constant in [12] and the limit case λ→ 1)
we suspect that the oscillation constant (3.14) is optimal and thus further refinements cannot
be expected by decreasing β, but by studying perturbation of Euler type equation with critical
constant. More precisely, we consider equation

(
Φ(x′(t))

)′
+

[(
p− 1

p

)p 1
λp−1

1
tp + g(t)

]
Φ
(
x(λt)

)
= 0, λ < 1. (3.15)
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Denote h(t) = t(p−1)/p. With this choice we have by direct computation (2.13), G1(t) =(
p−1

p

)p−1
, R1(t) =

(
p−1

p

)p−2
t, C1 = λp−1tp−1g(t) and by Theorem 3.2, (3.15) is oscillatory if

(ty′)′ +
(

p
p− 1

)p−2

λp−1 q− ε

2
tp−1g(t)y = 0

is oscillatory for some ε > 0. By the classical Hille–Nehari oscillation criterion this linear
equation is oscillatory if

lim inf
t→∞

ln t
∫ ∞

t
sp−1g(s)ds >

1
2qλp−1

(
p− 1

p

)p−2

=
1

2λp−1

(
p− 1

p

)p−1

. (3.16)

An important particular case of the perturbed Euler equation in the theory of ODE’s is the
Riemann–Weber equation, see [9, 2, 6]. This equation corresponds to the case when the limes
inferior in (3.16) becomes a nonzero finite number. A direct computation shows that taking
g(t) = µ

tp ln2 t
in (3.15) we have

lim inf
t→∞

ln t
∫ ∞

t
sp−1g(s)ds = µ

and thus the Riemann–Weber type equation

(
Φ(x′(t))

)′
+

[(
p− 1

p

)p 1
λp−1

1
tp +

µ

tp ln2 t

]
Φ
(
x(λt)

)
= 0, λ < 1. (3.17)

is oscillatory if µ > 1
2λp−1

(
p−1

p

)p−1
.
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