19,822 research outputs found

    Optimal partitioning of an interval and applications to Sturm-Liouville eigenvalues

    Full text link
    We study the optimal partitioning of a (possibly unbounded) interval of the real line into nn subintervals in order to minimize the maximum of certain set-functions, under rather general assumptions such as continuity, monotonicity, and a Radon-Nikodym property. We prove existence and uniqueness of a solution to this minimax partition problem, showing that the values of the set-functions on the intervals of any optimal partition must coincide. We also investigate the asymptotic distribution of the optimal partitions as nn tends to infinity. Several examples of set-functions fit in this framework, including measures, weighted distances and eigenvalues. We recover, in particular, some classical results of Sturm-Liouville theory: the asymptotic distribution of the zeros of the eigenfunctions, the asymptotics of the eigenvalues, and the celebrated Weyl law on the asymptotics of the counting function

    A Multiphase Shape Optimization Problem for Eigenvalues: Qualitative Study and Numerical Results

    Get PDF
    We consider the multiphase shape optimization problem min{i=1hλ1(Ωi)+αΩi: Ωi open, ΩiD, ΩiΩj=},\min\Big\{\sum_{i=1}^h\lambda_1(\Omega_i)+\alpha|\Omega_i|:\ \Omega_i\ \hbox{open},\ \Omega_i\subset D,\ \Omega_i\cap\Omega_j=\emptyset\Big\}, where α>0\alpha>0 is a given constant and DR2 D\subset\Bbb{R}^2 is a bounded open set with Lipschitz boundary. We give some new results concerning the qualitative properties of the optimal sets and the regularity of the corresponding eigenfunctions. We also provide numerical results for the optimal partitions

    Bargaining among Groups: An Axiomatic Viewpoint

    Get PDF
    We introduce a model of bargaining among groups, and characterize a family of solutions using a Consistency axiom and a few other invariance and monotonicity properties. For each solution in the family, there exists some constant alpha >= 0 such that the "bargaining power" of a group is proportional to calpha where c is the cardinality of the group.

    Size Monotonicity and Stability of the Core in Hedonic Games

    Get PDF
    We show that the core of each strongly size monotonic hedonic game is not empty and is externally stable. This is in sharp contrast to other sufficient conditions for core non-emptiness which do not even guarantee the existence of a stable set in such games.Core, Hedonic Games, Monotonicity, Stable Sets

    A deterministic truthful PTAS for scheduling related machines

    Full text link
    Scheduling on related machines (QCmaxQ||C_{\max}) is one of the most important problems in the field of Algorithmic Mechanism Design. Each machine is controlled by a selfish agent and her valuation can be expressed via a single parameter, her {\em speed}. In contrast to other similar problems, Archer and Tardos \cite{AT01} showed that an algorithm that minimizes the makespan can be truthfully implemented, although in exponential time. On the other hand, if we leave out the game-theoretic issues, the complexity of the problem has been completely settled -- the problem is strongly NP-hard, while there exists a PTAS \cite{HS88,ES04}. This problem is the most well studied in single-parameter algorithmic mechanism design. It gives an excellent ground to explore the boundary between truthfulness and efficient computation. Since the work of Archer and Tardos, quite a lot of deterministic and randomized mechanisms have been suggested. Recently, a breakthrough result \cite{DDDR08} showed that a randomized truthful PTAS exists. On the other hand, for the deterministic case, the best known approximation factor is 2.8 \cite{Kov05,Kov07}. It has been a major open question whether there exists a deterministic truthful PTAS, or whether truthfulness has an essential, negative impact on the computational complexity of the problem. In this paper we give a definitive answer to this important question by providing a truthful {\em deterministic} PTAS
    corecore