Scheduling on related machines (Q∣∣Cmax) is one of the most important
problems in the field of Algorithmic Mechanism Design. Each machine is
controlled by a selfish agent and her valuation can be expressed via a single
parameter, her {\em speed}. In contrast to other similar problems, Archer and
Tardos \cite{AT01} showed that an algorithm that minimizes the makespan can be
truthfully implemented, although in exponential time. On the other hand, if we
leave out the game-theoretic issues, the complexity of the problem has been
completely settled -- the problem is strongly NP-hard, while there exists a
PTAS \cite{HS88,ES04}.
This problem is the most well studied in single-parameter algorithmic
mechanism design. It gives an excellent ground to explore the boundary between
truthfulness and efficient computation. Since the work of Archer and Tardos,
quite a lot of deterministic and randomized mechanisms have been suggested.
Recently, a breakthrough result \cite{DDDR08} showed that a randomized truthful
PTAS exists. On the other hand, for the deterministic case, the best known
approximation factor is 2.8 \cite{Kov05,Kov07}.
It has been a major open question whether there exists a deterministic
truthful PTAS, or whether truthfulness has an essential, negative impact on the
computational complexity of the problem. In this paper we give a definitive
answer to this important question by providing a truthful {\em deterministic}
PTAS