3,786 research outputs found

    A literature analysis examining the potential suitability of terahertz imaging to detect friction ridge detail preserved in the imprimatura layer of oil-based, painted artwork

    Full text link
    This literature analysis examines terahertz (THz) imaging as a non-invasive tool for the imaging of friction ridge detail from the first painted layer (imprimatura) in multilayered painted works of art. The paintings of interest are those created utilizing techniques developed during the Renaissance and still in use today. The goal of analysis serves to answer two questions. First, can THz radiation penetrate paint layers covering the imprimatura to reveal friction ridge information? Secondly, can the this technology recover friction ridge detail such that the fine details are sufficiently resolved to provide images suitable for comparison and identification purposes. If a comparison standard exists, recovered friction ridge detail from this layer can be used to establish linkages to an artist or between works of art. Further, it can be added to other scientific methods currently employed to assist with the authentication efforts of unattributed paintings. Flanked by the microwave and far-infrared edges, THz straddles the electronic and optic perspectives of the electromagnetic spectrum. As a consequence, this range is imparted with unique and useful properties. Able to penetrate and image through many opaque materials, its non-ionizing radiation is an ideal non-destructive technique that provides visual information from a painting’s sub-strata. Imaging is possible where refractive index differences exist between different paint layers. Though it is impossible, at present, to determine when a fingerprint was deposited, one can infer approximately when a print was created if it is recovered from the imprimatura layer of a painting, and can be subsequently attributed to a known source. Fingerprints are unique, a person is only able to deposit prints while their physical body is intact and thus, in some cases, the multiple layer process some artists use in their work may be used to the examiner’s advantage. Impressions of friction ridge detail have been recorded on receiving surfaces from human hands throughout time (and have also been discovered in works of art). Yet, the potential to associate those recorded impressions to a specific individual was only realized just over one hundred years ago. Much like the use of friction ridge skin, the relatively recently discovered THz range is now better understood; its tremendous potential unlocked by growing research and technology designed to exploit its unique properties

    Microscopy in forensic science

    Get PDF
    This chapter examines the use of electron microscopy, atomic force microscopy and other analytical techniques in forensic investigation and research. These tools can be used to enhance examination of human remains and trace evidence to improve understanding of cause of death, victim identification or post mortem interval.A police-designed scenario is used to highlight trace evidence such as glass, gun shot residue and paint. The validity of forensic techniques is discussed, with reference to international standards, repeatability, and false convictions. Ballistic evidence is used to highlight the complexities in evidence interpretation, including manufacturing variability, environmental effects and likelihood ratios.The use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and other techniques in the development of forensic research is showcased, with particular examples from the field of fingerprints. Examples include improvements in the development of fingermarks from difficult surfaces, interaction of evidence types, and added intelligence from the crime scene, such as forensic timeline or gender of perpetrator

    Accelerated Fingerprint Enhancement: A GPU-Optimized Mixed Architecture Approach

    Full text link
    This document presents a preliminary approach to latent fingerprint enhancement, fundamentally designed around a mixed Unet architecture. It combines the capabilities of the Resnet-101 network and Unet encoder, aiming to form a potentially powerful composite. This combination, enhanced with attention mechanisms and forward skip connections, is intended to optimize the enhancement of ridge and minutiae features in fingerprints. One innovative element of this approach includes a novel Fingerprint Enhancement Gabor layer, specifically designed for GPU computations. This illustrates how modern computational resources might be harnessed to expedite enhancement. Given its potential functionality as either a CNN or Transformer layer, this Gabor layer could offer improved agility and processing speed to the system. However, it is important to note that this approach is still in the early stages of development and has not yet been fully validated through rigorous experiments. As such, it may require additional time and testing to establish its robustness and usability in the field of latent fingerprint enhancement. This includes improvements in processing speed, enhancement adaptability with distinct latent fingerprint types, and full validation in experimental approaches such as open-set (identification 1:N) and open-set validation, fingerprint quality evaluation, among others

    Virtual Frame Technique: Ultrafast Imaging with Any Camera

    Full text link
    Many phenomena of interest in nature and industry occur rapidly and are difficult and cost-prohibitive to visualize properly without specialized cameras. Here we describe in detail the Virtual Frame Technique (VFT), a simple, useful, and accessible form of compressed sensing that increases the frame acquisition rate of any camera by several orders of magnitude by leveraging its dynamic range. VFT is a powerful tool for capturing rapid phenomenon where the dynamics facilitate a transition between two states, and are thus binary. The advantages of VFT are demonstrated by examining such dynamics in five physical processes at unprecedented rates and spatial resolution: fracture of an elastic solid, wetting of a solid surface, rapid fingerprint reading, peeling of adhesive tape, and impact of an elastic hemisphere on a hard surface. We show that the performance of the VFT exceeds that of any commercial high speed camera not only in rate of imaging but also in field of view, achieving a 65MHz frame rate at 4MPx resolution. Finally, we discuss the performance of the VFT with several commercially available conventional and high-speed cameras. In principle, modern cell phones can achieve imaging rates of over a million frames per second using the VFT.Comment: 7 Pages, 4 Figures, 1 Supplementary Vide

    Interpol review of fingermarks and other body impressions 2016–2019

    Get PDF
    This review paper covers the forensic-relevant literature in fingerprint and bodily impression sciences from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/ 14458/file/Interpol%20 Review%20 Papers%202019. pdf

    Polarization- and Specular-Reflection-Based, Non-contact Latent Fingerprint Imaging and Lifting

    Get PDF
    In forensic science the finger marks left unintentionally by people at a crime scene are referred to as latent fingerprints . Most existing techniques to detect and lift latent fingerprints require application of certain material directly onto the exhibit. The chemical and physical processing applied onto the fingerprint potentially degrades or prevents further forensic testing on the same evidence sample. Many existing methods also come with deleterious side effects. We introduce a method to detect and extract latent fingerprint images without applying any powder or chemicals on the object. Our method is based on the optical phenomena of polarization and specular reflection together with the physiology of fingerprint formation. The recovered image quality is comparable to existing methods. In some cases like the sticky side of a tape our method shows unique advantages
    corecore