45 research outputs found

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph DLD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/51(n/2)^{1/5}-1 leaves

    On Spanning Galaxies in Digraphs

    Get PDF
    International audienceIn a directed graph, a star is an arborescence with at least one arc, in which the root dominates all the other vertices. A galaxy is a vertex-disjoint union of stars. In this paper, we consider the Spanning Galaxy problem of deciding whether a digraph D has a spanning galaxy or not. We show that although this problem is NP-complete (even when restricted to acyclic digraphs), it becomes polynomial-time solvable when restricted to strong digraphs. In fact, we prove that restricted to this class, the \pb\ is equivalent to the problem of deciding if a strong digraph has a strong digraph with an even number of vertices. We then show a polynomial-time algorithm to solve this problem. We also consider some parameterized version of the Spanning Galaxy problem. Finally, we improve some results concerning the notion of directed star arboricity of a digraph D, which is the minimum number of galaxies needed to cover all the arcs of D. We show in particular that dst(D)\leq \Delta(D)+1 for every digraph D and that dst(D)\leq\Delta(D) for every acyclic digraph D

    Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

    Get PDF
    We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, {\sc kk-Leaf Out-Branching}, which is to find an oriented spanning tree with at least kk leaves, we obtain an algorithm solving the problem in time 2O(klogk)n+nO(1)2^{O(\sqrt{k} \log k)} n+ n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed graph HH as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1)2^{O(\sqrt{k})}n + n^{O(1)}. The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc kk-Internal Out-Branching}, which is to find an oriented spanning tree with at least kk internal vertices. We obtain an algorithm solving the problem in time 2O(klogk)+nO(1)2^{O(\sqrt{k} \log k)} + n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed apex graph HH as a minor. Finally, we observe that for any ϵ>0\epsilon>0, the {\sc kk-Directed Path} problem is solvable in time O((1+ϵ)knf(ϵ))O((1+\epsilon)^k n^{f(\epsilon)}), where ff is some function of \ve. Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs

    Clique-width: When Hard Does Not Mean Impossible

    Get PDF
    In recent years, the parameterized complexity approach has lead to the introduction of many new algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently, rank-width. However, despite intensive work on the subject, there still exist well-established hard problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are known. Our article is interested mainly in the digraph case, targeting the well-known Minimum Leaf Out-Branching (cf. also Minimum Leaf Spanning Tree) and Edge Disjoint Paths problems on digraphs of bounded clique-width with non-standard new approaches. The first part of the article deals with the Minimum Leaf Out-Branching problem and introduces a novel XP-time algorithm wrt. clique-width. We remark that this problem is known to be W[2]-hard, and that our algorithm does not resemble any of the previously published attempts solving special cases of it such as the Hamiltonian Path. The second part then looks at the Edge Disjoint Paths problem (both on graphs and digraphs) from a different perspective -- rather surprisingly showing that this problem has a definition in the MSO_1 logic of graphs. The linear-time FPT algorithm wrt. clique-width then follows as a direct consequence

    Spanning directed trees with many leaves

    Get PDF
    The {\sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that - every strongly connected nn-vertex digraph DD with minimum in-degree at least 3 has an out-branching with at least (n/4)1/31(n/4)^{1/3}-1 leaves; - if a strongly connected digraph DD does not contain an out-branching with kk leaves, then the pathwidth of its underlying graph UG(DD) is O(klogk)O(k\log k). Moreover, if the digraph is acyclic, the pathwidth is at most 4k4k. The last result implies that it can be decided in time 2O(klog2k)nO(1)2^{O(k\log^2 k)}\cdot n^{O(1)} whether a strongly connected digraph on nn vertices has an out-branching with at least kk leaves. On acyclic digraphs the running time of our algorithm is 2O(klogk)nO(1)2^{O(k\log k)}\cdot n^{O(1)}

    On the Directed Full Degree Spanning Tree Problem

    Get PDF
    Abstract. We study the parameterized complexity of a directed analog of the Full Degree Spanning Tree problem where, given a digraph D and a nonnegative integer k, the goal is to construct a spanning out-tree T of D such that at least k vertices in T have the same out-degree as in D. We show that this problem is W[1]-hard even on the class of directed acyclic graphs. In the dual version, called Reduced Degree Spanning Tree, one is required to construct a spanning out-tree T such that at most k vertices in T have out-degrees that are different from that in D. We show that this problem is fixed-parameter tractable and that it admits a problem kernel with at most 8k vertices on strongly connected digraphs and O(k 2 ) vertices on general digraphs. We also give an algorithm for this problem on general digraphs with running time O(5.942 k · n O(1) ), where n is the number of vertices in the input digraph
    corecore